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Abstract

This paper develops new methods for testing equal predictive accuracy in
panels of forecasts that exploit information in the time series and cross-sectional
dimensions of the data. Using a common factor setup, we establish conditions
on cross-sectional dependencies in forecast errors which allow us to conduct
inference and compare performance on a single cross-section of forecasts. We
consider both unconditional tests of equal predictive accuracy as well as tests
that condition on the realization of common factors and show how to decompose
forecast errors into exposures to common factors and an idiosyncratic variance
component. Our tests are demonstrated in an empirical application that com-
pares IMF forecasts of country-level real GDP growth and inflation to private-
sector survey forecasts and forecasts from a simple time-series model.
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1 Introduction

Panels of forecasts of outcomes recorded over multiple periods of time for many dif-
ferent variables are now ubiquitous in economics and finance. For example, the IMF
produces annual forecasts of a variety of economic indicators such as real GDP growth
and inflation for around 180 countries. Financial analysts predict company earnings
and revenue for hundreds of firms spanning multiple industries. Credit card compa-
nies predict in real time whether a charge is fraudulent for millions of transactions on
a daily basis.1

The presence of both a cross-sectional and a time-series dimension in panel data
sets creates unique opportunities for testing economic hypotheses and comparing
the predictive accuracy of different forecasts. For example, at the most aggregate
level, we can test whether two alternative forecasts have the same predictive accuracy
“on average”, i.e., when averaged both cross-sectionally and over time. This type of
hypothesis does not rule out that one forecast dominates the other in expectation for
some time periods or for some units. Rather, it states that such differences in loss
differentials average out across time and units. Such tests may, however, overlook
differences that arise only during some periods or affect only certain units.

To address this point, we can instead compare two forecasts’ accuracy either by
averaging along the time-series dimension (e.g., years) for individual variables or clus-
ters of variable or, alternatively, by averaging along the cross-sectional dimension for
a single time period or a cluster of periods, in both cases testing whether a set of
forecasts are equally accurate within each cluster. Tests of the resulting hypotheses
can yield important insights into the economic sources of rejections of equal predic-
tive accuracy. For example, a test that exploits cross-sectional information but uses
only a short time-series record might find that model-based forecasts are inferior to
survey forecasts only during the Global Financial Crisis (GFC) in 2007-2009, while
the two sets of forecasts are equally accurate during more normal times. Such a
finding would indicate that the model-based forecasts adapted too slowly to the un-
usual economic conditions during the GFC, while conversely survey participants used
important forward-looking information to improve their forecasts during this period.
Alternatively, we could use a longer time-series record to separately compare the pre-
dictive accuracy of two competing approaches to predict company earnings clustered

1Baltagi (2013) provides an extensive review of forecast applications that use panel data.
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by industry, region, or country–in all cases clustering forecasts and outcomes by pre-
specified groups so as to gain insights into the forecasts’ relative accuracy for different
types of firms.

Considerations such as these lead us to first study tests of equal predictive accu-
racy that average over time for pre-specified cross-sectional clusters of units as well
as tests that average cross-sectionally using time-series observations. These tests use
the results of Ibragimov and Müller (2010, 2016) and so require normality assump-
tions for the average loss differential computed for the individual clusters of forecast
errors along with independence across clusters. Such assumptions generally require
invoking a Central Limit Theorem (CLT) for the clusters and so restrict the kind of
dependencies across forecast errors that can be accommodated–a point we address
subsequently.

Panels of economic forecasts often have a small time-series dimension but a large
cross-sectional dimension. This situation arises, for example, if the outcome is mea-
sured either at a quarterly or at an annual frequency, limiting the number of time-
series observations, or in the case of surveys that do not go far back in time. A
paucity of time-series observations means that conventional tests of equal predictive
accuracy conducted by comparing time series of forecasts for individual outcome vari-
ables lack power, particularly if performed out-of-sample.2 By relying on time-series
averages, conventional tests of equal predictive accuracy are also heavily dependent
on time-series stationarity assumptions which are often questionable. An attractive
alternative to such tests is to exploit the cross-sectional dimension to test whether,
for a short sub-sample or even a single time period, the cross-sectional average pre-
dictive accuracy is identical across alternative forecasts. Focusing on individual time
periods also facilitates faster real-time evaluation of forecasting performance than
conventional methods that require calculating often lengthy time-series averages of
forecasting performance.

The key challenge that arises in cross-sectional comparisons of forecasting
performance–measured, e.g., by mean squared forecast errors–is the possible presence
of a common component in squared error loss differentials. Common components,
if sufficiently strong, can invalidate the use of a cross-sectional CLT to derive dis-
tributional results for test statistics based on cross-sectional averages computed for

2See Inoue and Kilian (2005) and Hansen and Timmermann (2015) for a discussion of the reduced
power of out-of-sample tests.
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a single time period. To address this challenge, we next develop a common factor
framework that allows differences in squared forecast errors to be correlated both over
time and cross-sectionally. We cover both the case with homogeneous factor loadings
as well as the general case in which factor loadings are heterogeneous across units.
The case with homogeneous factor loadings gives rise to tests of equal uncondition-
ally expected predictive accuracy, while the case with heterogeneous factor loadings
is better covered by a test that conditions on factor realizations.

The magnitude of any common components in squared forecast error differences
turns out to contain important economic information. To the extent that large com-
mon shocks to the outcome were unanticipated by all forecasters, they will cancel
out from comparisons of relative squared-error forecasting performance. Conversely,
idiosyncratic shocks that are specific to the individual forecasters should not cancel
out from squared error loss differentials. To get a better sense of the commonality and
predictability of economic shocks, we therefore propose a new decomposition of the
squared forecast error differential into a squared bias component, which tracks differ-
ences in two forecasts’ exposures to common factors, and an idiosyncratic variance
component. Since only the total squared forecast error differential is observed, we
develop three approaches to estimate the common factors in forecast errors, namely
(i) a cluster method that imposes homogeneity restrictions on factor loadings within
clusters; (ii) a common correlated effects estimator based on Pesaran (2006); and (iii)
a principal components approach. These approaches work under a variety of assump-
tions about the number of factors and possible structure in factor loadings and so
should cover most situations encountered by applied researchers.

We illustrate our new tests in an empirical application to the International Mon-
etary Fund’s (IMF) World Economic Outlook (WEO) forecasts of annual real GDP
growth and inflation for a sample of 180 countries covering 27 annual observations and
four forecast horizons over the period from 1990 to 2016. We compare these forecasts
to private-sector survey forecasts reported by the Consensus Economics organization
in addition to forecasts generated by a simple autoregressive time-series model.

Empirically, for GDP growth forecasts, we mostly find that we cannot reject the
null that the IMF and Consensus Economics forecasts are equally accurate, except
during the peak of the Global Financial Crisis (2008) at which point the IMF forecasts
became relatively more accurate. Interestingly, during our sample the idiosyncratic
variance component of the IMF GDP growth forecasts has been systematically de-
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clining relative to that of the Consensus Economics forecasts.
Conversely, we find that the IMF current-year inflation forecasts are significantly

more accurate than their Consensus Economics counterparts, although they seem to
be equally accurate at the one-year horizon. This finding can be attributed mostly
to the accuracy of the IMF inflation forecasts for non-advanced economies along with
relatively accurate forecasts for advanced economies during the global financial crisis.
Inspecting the underlying forecast error components, we find that the relatively accu-
rate IMF inflation forecasts arises from a systematically lower squared bias component
compared with both the Consensus Economics and autoregressive forecasts.

Looking at the term structure of squared forecast errors across different forecast
horizons, our tests allow us to identify the points in time in which the IMF forecasts
gain in precision. We find that the accuracy of the IMF’s GDP growth forecasts only
begins to improve in the fall of the previous year. This suggests that information that
facilitates more accurate forecasts of GDP growth tends to be quite short-lived and
that improvements in real GDP growth forecasts more than 15 months out from the
target date are relatively minor. Conversely, inflation forecasts tend to improve both
at longer and shorter forecast horizons.

Our paper contributes to a large literature that compares the predictive accu-
racy of time-series forecasts of a single outcome. In an early contribution, Chong
and Hendry (1986) propose tests of forecast encompassing. More recently, Diebold
and Mariano (1995) and West (1996) develop tests for comparing the null of equal
predictive accuracy. Clark and McCracken (2001) and McCracken (2007) focus on
comparisons of predictive accuracy for forecasts that are generated by nested models,
while accounting for the effect of recursive updating in the parameter estimates used
to generate forecasts. Giacomini and White (2006) propose a test of equal predictive
accuracy that accounts for the presence of non-vanishing parameter estimation error
and develop methods for conditional forecast comparisons. We build on these earlier
contributions, but show how the presence of a cross-sectional dimension can (i) en-
rich the set of economic hypotheses that can be tested; (ii) dispense with the need for
restrictive assumptions on time-series stationarity for the underlying data generating
process; and (iii) increase the power of existing time-series tests generalized to a panel
setting.

There is also a literature on evaluating efficiency of forecasts with panel data; see,
e.g., Keane and Runkle (1990), Davies and Lahiri (1995), and Patton and Timmer-
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mann (2012). However, this literature does not provide methods for systematically
comparing the relative accuracy of different forecasts or for conducting tests of the
null of equal predictive accuracy across different forecasts.

The outline of the paper is as follows. Section 2 introduces tests of equal predictive
accuracy for panels of forecasts conducted for the pooled average (pooling both cross-
sectionally and across time) or pooled separately across time clusters or cross-sectional
clusters. Using these test, Section 3 conducts an empirical analysis that compares the
IMF forecasts of GDP growth and inflation to the equivalent Consensus Economics
and autoregressive forecasts. Section 4 introduces a common factor decomposition of
forecast errors and proposes ways to compare predictive accuracy for individual cross-
sections. Section 5 proposes a decomposition of the mean squared forecast errors into
a squared bias and an idiosyncratic error variance component and derives statistics
for testing the null that these two components are of the same magnitude across
different forecasts. Section 6 concludes. Technical proofs are in an Appendix.

2 Panel Tests of Equal Predictive Accuracy

Consider a panel of data with yit+h denoting the realized value of unit i at time t+h,
where i = 1, ...., n refers to the cross-sectional dimension and t + h = 1, ...., T refers
to the time-series dimension.3 Further, suppose we observe a series of h-step-ahead
forecasts of the outcome, yit+h, generated conditional on information available to
the forecaster at time t. We denote these by ŷit+h|t,m, where m = 1, ...,M indexes
the individual forecasts (e.g., forecasting models) and h ≥ 0 is the forecast horizon.
To keep the analysis simple, we focus on the case with a pair of competing forecasts,
M = 2. However, our approach can easily be generalized to a setting with an arbitrary
(and growing) number of forecasts, M .

To compare the predictive accuracy of different forecasts we must have a loss func-
tion that quantifies the cost of different forecast errors. Following Diebold and Mari-
ano (1995), define the loss associated with forecast m as Lit+h|t,m = L(yit+h, ŷit+h|t,m).
Consistent with most empirical work, we assume that the loss is a quadratic function

3To simplify notations, we assume that n does not depend on time, but our analysis readily allows
for unbalanced panels.
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of the forecast error, eit+h,m = yit+h − ŷit+h|t,m, and thus takes the form4

L(yit+h, ŷit+h|t,m) = e2it+h,m. (1)

Following Diebold and Mariano (1995) and Giacomini and White (2006), we treat
the forecasts as given and make high-level assumptions on the distribution of the
forecast errors or, more generally, the sequence of losses Lit+h|t,m. In particular, we
do not consider the effect of estimation error on the distribution of the test statistics
which we derive.5

2.1 Tests for the Pooled Average

We can consider many different ways to aggregate the loss for panels of forecasts and
outcomes. A natural starting point is the pooled average loss associated with forecast
m averaged across the T time-series observations and n cross-sectional units:

Lm ≡
1

nT

T∑
t+h=1

n∑
i=1

L(yit+h, ŷit+h|t,m). (2)

Our first hypothesis is that the pooled average loss is equal in expectation for a pair
of forecasts m1 and m2:

Hpool
0 : E[Lm1 ] = E[Lm2 ]. (3)

The null in (3) does not rule out that the expected predictive accuracy of a pair
of forecasts, m1 and m2, is different for a particular time period, t + h. It also does
not rule out that forecast m1 is more accurate than m2 for some units, i, while being
less accurate for others. Rather, it states that such differences average out across the
cross-sectional and time-series dimensions.

To test Hpool
0 , define the squared-error loss differential between forecasts m1 and

4See Elliott et al. (2005) for a more general loss function that nests squared error loss as a special
case.

5Estimation error and its effect on tests for equal predictive accuracy features prominently in
the analysis of West (1996), Clark and McCracken (2001), McCracken (2007), and Hansen and
Timmermann (2015).
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m2 for unit i at time t+ h as

∆Li,t+h|t = e2it+h,m1
− e2it+h,m2

. (4)

We can then test the null in (3) using the test statistic

JDMn,T = (nT ) −1/2
∑T

t+h=1

∑n
i=1 ∆Li,t+h|t

σ̂(∆Lt+h|t)
, (5)

where σ̂(∆Lt+h|t) is a consistent estimator for
√

Var
(

(nT )−1/2
∑T

t=1

∑n
i=1 ∆Li,t+h|t

)
.

The test statistic in (5) pools information across both the time-series and cross-
sectional dimensions and, as such, is naturally viewed as a Diebold-Mariano Panel
test for equal predictive accuracy (Diebold and Mariano (1995). Pooling information
across both dimensions can potentially provide greater statistical power in empirical
work.

Letting ∆Lt+h = n−1
∑n

i=1 ∆Li,t+h|t be the cross-sectional average loss differential
at time t+ h, we can define the (scaled) average loss at time t+ h as

Rt+h = n1/2∆Lt+h. (6)

Under standard assumptions of weak serial dependence in the sequence of forecast
losses, we can compute the standard error in the denominator of (5) using a Newey
and West (1987) estimator:

σ̂(∆Lt+h|t) =

√√√√ J∑
j=−J

(1− j/J)γ̂h(j), (7)

where J > 0 is the maximum lag length and γ̂h(j) = T−1
∑T

t+h=j+1 R̃t+h−jR̃t+h with
R̃t+h = Rt+h − R̄h and R̄h = T−1

∑T
s+h=1Rs+h. For j < 0, we set γ̂(j) = γ̂(−j).

Assuming that T is large, under standard conditions we can invoke a central limit
theorem (CLT) for the time series data {Rt+h}Tt+h=1.

Theorem 1. Suppose that max1≤t≤T E|Rt+h|r is bounded with r > 2 and that
{Rt+h}Tt+h=1 is α-mixing of size −r/(r − 2). Also assume that σ̂(∆Lt+h|t) =

σ̄n,T + oP (1) and σ̄n,T > 0 is bounded away from zero, where σ̄2
n,T =
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Var
(

(nT )−1/2
∑T

t=1

∑n
i=1 ∆Li,t+h|t

)
. Then under Hpool

0 in (3), JDMn,T
d→ N(0, 1).

Theorem 1 follows by exploiting the assumption of weak serial dependence. How-
ever, it does not require restrictions on the degree of cross-sectional dependence and
in fact allows for arbitrary cross-sectional dependence in the loss differentials.

In practice, we may be interested in knowing if a particular forecast (m1 or m2)
was significantly more accurate than an alternative forecast in some time periods or
for some variables even if this does not carry over to other periods or hold for all
variables. To address this issue, we next develop test statistics that can be used to
detect differences across clusters of time-series or cross-sectional data.

2.2 Testing Equal Predictive Accuracy for Clusters

In many situations, the relative accuracy of a set of economic forecasts can be expected
to differ across time or across units either due to their use of different information
sets or due to differences in modeling approaches. The Federal Reserve may, for
example, have superior information relative to private forecasters about the state
of the economy or the likely future path of interest rates that is particularly useful
during financial crises. During normal times, this informational advantage may be
smaller. Under this scenario, the economic forecasts of the Federal Reserve could
be more accurate than private sector forecasts during crises but not during normal
times. As a second example, the IMF may have superior expertise and information
about developing economies and program countries in particular, whereas information
is more symmetric–vis-a-vis private sector forecasters–for advanced economies. As a
third example, two forecasts could be equally accurate “on average” with one forecast
being better for advanced economies but worse for developing economies.

In situations such as these, the null in (3) of equal “average” predictive accuracy is
of less interest as we might be specifically interested in testing whether two forecasts
are equally accurate either across certain periods of time or for different cross-sectional
groups or clusters. This subsection develops a framework for conducting such tests.

2.2.1 Time Clusters

We first consider testing whether a pair of forecasts are equally accurate during cer-
tain pre-defined blocks of time. To this end, we partition the panel of loss differentials
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along the time-series dimension into a set of K clusters {t1, t2, ..., tK} which are as-
sumed to be mutually exclusive and exhaustive so that ∪Kj=1tj = [h + 1 : T + h].
Denote the associated test statistics by {Rt1 , Rt2 , ..., RtK}. For example, if each clus-
ter has equal length, q, the test statistic for the jth cluster can be computed as
Rtj = q−1

∑jq+h−1
t=(j−1)q+hRt.6 When q = 1, each time period is a separate cluster.

Suppose we are interested in testing that the null of equal predictive accuracy for
two forecasts holds within each of the time-series clusters:

HTcluster
0 : ERt1 = ERt2 = · · · = ERtK = 0. (8)

The null in (8) does not test whether the loss differential averaged across the K
clusters equals zero, i.e., K−1

∑K
j=1ERtj = 0. This would be identical to testing the

null in (3) which arises as a special case with a single cluster, i.e., K = 1. Clearly
this null is less restrictive than, and indeed implied by, HTcluster

0 in (8) which tests
that equal predictive accuracy holds for each time cluster.

Suppose that n is large and assume that a CLT applies to the cross-section of fore-
cast errors so Rtj is Gaussian.7 Then we can test the null in (8) using the framework
for inference with clusters developed by Ibragimov and Müller (2010, 2016). In the
present context, this approach offers several advantages. Besides arising naturally as
a way of testing (8), the approach does not require stationarity of the underlying loss
differentials. Moreover, it can be used with as little as T = 2 time periods and gives
rise to a t-test that is easily computed:

JRn =

√
KR̄√

(K − 1)−1
∑K

j=1(Rtj − R̄)2
, (9)

where R̄ = K−1
∑K

j=1Rtj is the loss differential averaged across the K clusters. We
can establish the distributional properties of the test statistic in (9) under the follow-
ing assumption:

Assumption 1. Let R(n) = (Rt1 , ..., RtK )′ ∈ RK. Suppose that R(n) − ER(n) →d

N(0,Ω) as n→∞, where Ω is a diagonal matrix.

The diagonal matrix in Assumption 1 requires that Rtj is asymptotically inde-
6More generally, q = bT/Kc is the average length of each cluster and we can let the cluster length

vary across the K clusters.
7This assumption also rules out strong serial dependence among the loss differentials.
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pendent across the K clusters. As discussed in Section 3.1 of Ibragimov and Müller
(2010), one way to achieve this is by separating the subsamples (tj) by a sufficient
number of time periods.8 The assumption of asymptotic normality rules out that the
cross-sectional dependence in the loss differentials is so strong that it invalidates the
use of a cross-sectional CLT–a point we shall be more specific about in Section 4.

Importantly, Assumption 1 refers to the properties of the loss differentials and
so we do not require that the data generating process for the outcome variable be
stationary provided that any non-stationary components either are incorporated in
both forecasts or, if not, affect both forecasts equally and so vanish from the loss
differentials.

By Theorem 1 of Ibragimov and Müller (2010) and the continuous mapping the-
orem, we have the following result:

Theorem 2. Suppose that Assumption 1 and one of the following conditions hold:
(1) K ≥ 2 and α ≤ 0.08326.
(2) 2 ≤ K ≤ 14 and α ≤ 0.1.
(3) K ∈ {2, 3} and α ≤ 0.2.
Then under HTcluster

0 we have

lim sup
n→∞

P
(
|JRn | > tK−1,1−α/2

)
≤ α.

Here tK−1,1−α denotes the 1−α quantile of the Student-t distribution with K − 1

degrees of freedom. When the test statistics computed for the individual clusters do
not have the same variance, using critical values from the student-t distribution can
lead to conservative inference. With a conventional test size (α ≤ 0.05), we only need
K ≥ 2 clusters to apply the test. However, if α = 0.10, we can have at most K = 14

clusters.
An alternative strategy for testing the null in (8) is to use the randomization test

recently proposed by Canay et al. (2017). Define the randomization p-value:

p̂R = 2−K
∑

ξ1,...,ξK∈{−1,1}

1

{∣∣∣∣∣
K∑
j=1

Rtjξj

∣∣∣∣∣ >
∣∣∣∣∣
K∑
j=1

Rtj

∣∣∣∣∣
}
, (10)

where ξ1, ..., ξK ∈ {−1, 1} are all possible combinations of the K variables ξ1, ..., ξK ,
8Provided that the data are weakly dependent, by a CLT it follows that the cluster averages will

be Gaussian with diagonal variance-covariance matrix.
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each of which takes a value of ±1.
Under the conditions stated in Assumption 1, we have the following result:

Theorem 3. Suppose Assumption 1 holds. Then under HTcluster
0 we have

lim sup
n→∞

|P (p̂R > α)− α| ≤ 2−K .

Although the assumptions of the randomization test in (10) are the same as those
used by the t-test in (9), the two tests have different properties. For example, the
t-test might be more accurate when K is very small. In empirical applications with
less than 5 clusters, inference at the 5% significance level only rejects when the p-
value is exactly zero. On the other hand, for larger values of K, Theorem 3 implies
a similarity property of the randomization test.9 However, as pointed out in Canay
et al. (2017), the bound on the size distortion in Theorem 3 implies that, provided
the number of clusters is not too small, the null rejection probability will be at least
α− 2−K .

2.2.2 Cross-sectional Clusters

In addition to testing the null of equal predictive accuracy for a pair of forecasts,
averaged cross-sectionally for different blocks in time, we can also test whether the
forecasts are equally accurate within each of a set of pre-specified cross-sectional clus-
ters. This type of test typically averages over the full time-series sample, as opposed
to the test in (9) which performs cross-sectional averaging. For example, we may
be interested in testing whether two forecasts are equally accurate for advanced as
well as for developing economies. This null does not amount to testing whether the
predictive accuracy is the same for advanced and developing economies–we would gen-
erally expect forecasts to be less accurate for the more volatile developing economies.
Rather, it amounts to separately testing whether a pair of forecasts have the same
expected accuracy among developing economies as well as among advanced economies
even though, in absolute terms, their predictive accuracy could be different across the
two sets of economies.

To set up such a test, suppose that the individual units have been categorized
into K cross-sectional clusters, denoted by H1, ..., HK . Let |Hj| denote the number of

9A test is similar if its rejection probability is the same across all parameter values that satisfy
the null hypothesis.
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elements in the jth cluster, i.e., the cardinality of Hj, with
∑K

j=1 |Hj| = n and define

Dj = |Hj|−1/2T−1/2
∑
i∈Hj

T∑
t=1

∆Li,t+h|t,

The null hypothesis of equal predictive accuracy within each cross-sectional cluster
takes the form

HCcluster
0 : ED1 = ED2 = · · · = EDK = 0. (11)

This setup is equivalent to that in Section 2.2.1. However, here we rely on the time-
series dimension T being sufficiently large to ensure that the K time-series averages of
loss differentials are approximately Gaussian and the goal is to test that their means
are all zero.

Let D̄ = K−1
∑K

j=1Dj be the average of the loss differences across the K cross-
sectional clusters and consider the test statistic

JDn =

√
KD̄√

(K − 1)−1
∑K

j=1(Dj − D̄)2
. (12)

Analogous to the result for the time-series clusters, we make the following assump-
tion:10

Assumption 2. Let Dn,T = (D1, ..., DK)′ ∈ RK. Suppose that Dn,T − E(Dn,T ) →d

N(0,Ω) as n, T →∞, where Ω is a diagonal matrix.

Assumption 2 relies on a CLT for time-series averages and so rules out situations
with either a small T or strong serial dependency. We discuss alternative approaches
that do not require this assumption in Section 4 and, for now, focus on situations
where the assumption holds. By Theorem 1 of Ibragimov and Müller (2010) and the
continuous mapping theorem, we have the following result:

Theorem 4. Suppose Assumption 2 and one of the following conditions hold:
(1) K ≥ 2 and α ≤ 0.08326.
(2) 2 ≤ K ≤ 14 and α ≤ 0.1.
(3) K ∈ {2, 3} and α ≤ 0.2.

10A sufficient condition for Dn,T − E(Dn,T ) →d N(0,Ω) is that |Hj | → ∞ for each j along with
weak serial dependence for ∆Li,t+h|t.
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Then under HCcluster
0 the following holds

lim sup
n,T→∞

P
(
|JDn | > tK−1,1−α/2

)
≤ α.

Theorem 4 establishes conditions under which the simple test procedure of Ibrag-
imov and Müller (2010) can be applied to test the null of equal predictive accuracy
within clusters of units formed as subsets of the cross-sectional data.

Similarly, we can establish a result that is equivalent to Theorem 3 for the cross-
sectional clusters. To this end, define the randomization p-value:

p̂D = 2−K
∑

ξ1,...,ξK∈{−1,1}

1

{∣∣∣∣∣
K∑
j=1

Djξj

∣∣∣∣∣ >
∣∣∣∣∣
K∑
j=1

Dj

∣∣∣∣∣
}
. (13)

Using Assumption 2, we have

Theorem 5. Suppose Assumption 2 holds. Then under HCcluster
0 we have

lim sup
n,T→∞

|P (p̂D > α)− α| ≤ 2−K .

Provided that the conditions in Assumption 2 hold, this result means that we can
apply the randomization test in (13) for the cross-sectional clusters.

3 Empirical Results

To illustrate the economic insights that can be gained from the test statistics intro-
duced in section 2, we next conduct an empirical analysis that focuses on the predic-
tive accuracy of the International Monetary Fund’s (IMF) World Economic Outlook
(WEO) forecasts of real GDP growth and inflation across the world’s economies.11

We compare the WEO forecasts to forecasts from a private-sector organization (Con-
sensus Economics) as well as forecasts from a simple autoregressive model.

11The WEO forecasts are extensively followed by the public and have been the subject of a number
of academic studies, as summarized in Timmermann (2007).
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3.1 Data

The IMF WEO forecasts are reported twice each year, namely in April (labeled
Spring, or S) and October (Fall, or F ), for the current-year (h = 0) and next year
(h = 1) horizons. As illustrated in Figure 1, this produces a set of four forecast
horizons, listed in decreasing order: {h = 1, S; h = 1, F ; h = 0, S; h = 0, F}.12 For a
subset of (mostly advanced) countries, current-year forecasts go back to 1990, while
next-year forecasts start in 1991. For other countries the forecasts start later, giving
a somewhat shorter data sample. For all countries, the last outcome is recorded for
2016.

We compare the WEO forecasts at the four forecast horizons to current-year and
next-year forecasts reported by the Consensus Economics organization in their April
and October surveys. Consensus Economics (CE) is a London-based organization
which each month surveys a range of private forecasters. Their forecasts are carefully
checked and are known to be of high quality. Moreover, their forecasts have been
used in prior studies such as Loungani (2001), Patton and Timmermann (2010) and
Patton and Timmermann (2011). The list of countries covered by CE is smaller than
that covered by the WEO forecasts, restricting the cross-sectional dimension of our
comparison. In total, we can compare the WEO and CE forecasts for 85 (real output
growth) or 86 (inflation) countries.

We also compare the one-year-ahead (h = 1) WEO forecasts to forecasts gener-
ated by an AR(1) model estimated separately for each country. Though this is a very
simple approach, parsimonious models have often proven difficult to beat in empirical
analyses of out-of-sample forecasting performance, see, e.g., Faust and Wright (2013).
Autoregressive forecasts of the outcome variable in year t, yit, are based on a fore-
casting model that uses data on the outcome for the previous year, yit−1, to estimate
the intercept and AR(1) coefficient. This gives an advantage to the AR(1) model
because, in practice, the previous year’s GDP growth and inflation are not observed
until well into year t. Data on actuals extend back to 1985 and we use the 10-year
window 1985-1994 as a warm-up period, adopting a recursively expanding estimation
window to produce subsequent forecasts. Thus, the first AR(1) forecast uses data
from 1985-1994 to predict the outcome for 1995. The second forecast uses data from
1985-1995 to predict the outcome for 1996, and so on. In total, we can compare the

12The WEO forecasts cover forecast horizons up to five years but we do not use the longer forecast
horizons due to the relatively short time span of our data.
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WEO country-level forecasts to 180 or 181 forecasts generated by the AR(1) model.

3.2 Comparisons of GDP Growth Forecasts

The top row in Table 1 reports values of the test statistic for the null of equal (pooled
average) predictive accuracy (Hpool

0 in (3)) which averages squared-error loss differ-
ences both cross-sectionally and across time. We set up the tests so that positive
values indicate that the WEO forecasts are, on average, more accurate than the CE
or autoregressive forecasts, while negative values suggest the opposite.13

First, consider the forecasts of real GDP growth (Panel A). The pooled average
t-test in equation (5) is positive for the three shortest forecast horizons and negative
only for the shortest horizon (h = 0, F ). However, the tests comparing the accuracy of
the WEO forecasts to the CE forecasts (four left-most columns) fail to be significant
for any of the individual horizons. Conversely, the comparisons of the one-year-ahead
WEO forecasts to the autoregressive forecasts (two right-most columns) show that the
WEO Fall forecasts (though not the Spring forecasts) are significantly more accurate,
on average, than the AR forecasts with a t-statistic of 2.25 and a p-value of 0.02.

Next, consider testing the null HTcluster
0 in (8) that the forecasts are equally ac-

curate for all time clusters. We first treat individual calendar years as separate time
clusters so that the current-year forecasts (h = 0) are based on K = 27 one-year
time clusters, while next-year forecasts (h = 1) are based on K = 26 one-year clus-
ters. Rows 3 and 4 report the t-statistic from equation (9) along with the p-value for
a one-sided test against the alternative that the WEO forecasts are more accurate.
None of the t-tests comparing the WEO and CE forecasts is statistically significant
as evidenced by the p-values which all exceed 0.10. The randomization test (10) re-
ported in the fifth row leads to identical conclusions with p-values ranging from 0.38
to 0.92, suggesting that there is no statistically significant differences in the average
predictive accuracy of the WEO vs CE forecasts for any of the individual years during
our sample.

We also consider an alternative time-clustering scheme that uses three time clus-
ters arranged around the Global Financial Crisis (GFC), namely 1995-2006, 2007-
2009, and 2010-2016.14 The results, listed in line six for the randomization p-value,

13In particular, this means that m1 refers to the CE or autoregressive forecasts while m2 refers to
the WEO forecasts.

14See https://www.stlouisfed.org/financial-crisis/full-timeline for a timeline of the financial crisis.
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show that we cannot reject the null that the CE and WEO forecasts of GDP growth
were equally accurate both during the GFC and in more normal times. Conversely,
with p-values below 0.01, there is very strong evidence that the Spring and Fall one-
year-ahead WEO forecasts of GDP growth were significantly more accurate than the
autoregressive forecasts for at least one of these time clusters. This stands in con-
trast to the results from applying the same test statistic to the individual years and
so shows that additional power can be gained from grouping time periods based on
economic characteristics–in this case the unfolding of a major global crisis.

Finally, we cluster the country observations along a set of IMF classifications
which consider geographical regions and economic development stages. Specifically,
we use a partition of K = 7 clusters of countries, namely (i) Advanced Economies
(36 countries in 2016), (ii) Emerging and Developing Europe (9), (iii) Emerging and
Developing Asia (27), (iv) Latin America and the Caribbean (32), (v) Middle East,
North Africa, Afghanistan, and Pakistan (21), (vi) Commonwealth of Independent
States (12), and (vii) Sub-Sahara Africa (45), with the number of countries within
each cluster listed in parentheses. Consensus Economics cover fewer countries in
their forecasts–particularly among developing economies. To ensure that we have a
sufficiently large number of members in each cluster, in the WEO vs. CE comparison,
we therefore merge the Emerging and Developing Asia, Middle East, North Africa,
Afghanistan, and Pakistan, and Sub-Sahara Africa clusters into one cluster labeled
DMS.15 This leaves us with five clusters for the WEO vs. CE comparisons.

Row seven in Table 2 reports the t-statistic from equation (12) with p-values in
rows eight and nine, the latter for the randomization test (13). Again we fail to find
evidence of significant differences in the accuracy of the WEO versus CE forecasts.
Conversely, the one-year Fall WEO forecast is significantly more accurate than the
autoregressive forecast with a p-value of 0.02 or 0.00, depending on the choice of test
statistic.

These results show that we cannot reject the null that the WEO and CE forecasts
of GDP growth are equally accurate for the pooled average as well as within the
clusters formed along time-series or cross-sectional dimensions. However, we find
strong evidence that the one-year-ahead WEO Fall forecasts of GDP growth are

15In addition, our comparison of the WEO forecasts and the autoregressive forecasts combines the
Middle East, North Africa, Afghanistan, and Pakistan and sub-Sahara Africa groups into a single
cluster, yielding a total of six clusters.

17



significantly more accurate than the autoregressive forecasts for at least one period
(time cluster) and one cross-sectional group (region cluster).

To assist in interpreting the aggregate test statistics reported in Table 1, in Table
2 we break down the comparisons of predictive accuracy by country clusters and,
thus, compute the test statistic (5) applied to the countries in the individual clusters.
Interestingly, there is no evidence that the accuracy of the WEO and CE forecasts
of GDP growth differ significantly for any of the five clusters that we use to compare
these forecasts (Panel A). In contrast, we find that the WEO forecasts are significantly
more accurate than the AR(1) forecasts for Emerging and Developing Europe and
Latin America and the Caribbean (Fall forecasts only), though not for any of the
other clusters.

3.3 Comparisons of Inflation Forecasts

Turning to the inflation forecasts, the top row of Panel B in Table 1 shows that the
pooled average squared-error losses of current-year (h = 0) Spring and Fall WEO
inflation forecasts are significantly smaller than those of the CE forecasts with p-
values of 0.00 and 0.02, respectively. Similar conclusions hold when we test the
null of equal predictive accuracy for the individual-year or GFC time clusters (rows
three through six). Interestingly, while the country cluster tests (rows seven through
nine) for the current-year WEO Spring inflation forecasts continue to be significantly
more accurate than their CE counterparts, current-year Fall forecasts fail to reject
the null of equal predictive accuracy. Overall, though, our tests suggest a strong
rejection of the null of equal predictive accuracy of the WEO and CE current-year
inflation forecasts both across time and across economic groups against the alternative
that the WEO forecasts are more accurate. Conversely, the WEO and CE one-year-
ahead inflation forecasts appear to be of broadly similar accuracy with most of the
test statistics computed for this horizon failing to reject the null of equal predictive
accuracy at this horizon.16

Our comparison of the average predictive accuracy of the WEO and autoregressive
forecasts of inflation unequivocally leads to strong rejections of the null of equal
predictive accuracy. The null is strongly rejected for the pooled average (top row) with
p-values below one percent for both sets of next-year forecasts. Similar conclusions

16At the one-year horizon, only the randomization p-value method based on the GFC time blocks
suggest that the WEO Fall inflation forecasts are significantly more accurate than the CE forecasts.
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are obtained from the time-series cluster and regional cluster tests. This shows that
there are both time periods and regions for which the WEO inflation forecasts are
significantly more accurate than the autoregressive forecasts of inflation.

Turning again to the sources of the outcomes of these aggregate test results, Panel
B in Table 2 reports results for the individual country clusters. We find that current-
year WEO forecasts for the Latin American and Caribbean countries, the Common-
wealth of Independent States, and the DMS countries are significantly more accurate
than the CE forecasts. Conversely, for advanced economies and developing Europe,
there is no evidence to suggest that the WEO inflation forecasts are more accurate
than the CE forecasts at any of the horizons. This finding is consistent with the
notion that the IMF possesses special expertise when it comes to predicting inflation
rates in less developed economies. Compared to the autoregressive inflation forecasts,
we see large and significant improvements in the WEO one-year forecasts across all
clusters included in our analysis.

3.4 Comparisons Across Forecast Horizons

Because we observe WEO forecasts of the same outcome (real GDP growth or inflation
for country i in year t) produced at four different horizons, we can measure whether
the accuracy of the forecasts improves as the time of the outcome draws closer and
the forecast horizon shrinks. We would expect predictive accuracy to improve as
the forecast horizon is reduced and more information about the outcome becomes
available. Ordering the WEO forecasts from the longest (h = 1, S) to the shortest
(h = 0, F ) horizon, this means that we would expect

Hhorizon
0 : E[e2h=0,F ] ≤ E[e2h=0,S] ≤ E[e2h=1,F ] ≤ E[e2h=1,S]. (14)

To test if this holds, following Patton and Timmermann (2011) we consider the fol-
lowing four squared error loss differences:

∆Li,t+h(h = 1, S;h = 1, F ) = e2i,t+1,S − e2i,t+1,F

∆Li,t+h(h = 1, F ;h = 0, S) = e2i,t+1,F − e2i,t+0,S,

∆Li,t+h(h = 0, S;h = 0, F ) = e2i,t+0,S − e2i,t+0,F ,

∆Li,t+h(h = 1, S;h = 0, F ) = e2i,t+1,S − e2i,t+0,F (15)

19



The last difference in (15) is used to measure whether, on average, the WEO current-
year Fall forecasts (h = 0, F ) are more accurate than the Spring forecasts for the same
outcome computed one year previously (h = 1, S) and, thus cumulates any gains in
accuracy over the three preceding intervals. Generally, we would expect current-year
forecasts to be more accurate than next-year forecasts and a failure to reject the
null of equal predictive accuracy against the alternative E[e2h=0,F ] < E[e2h=1,S] would
suggest that the IMF does not learn any new forecast-relevant information during
the 18 months leading up to and including most of the current year whose outcome
is being predicted.

Identifying the points in time at which forecast-improving information arrives
is economically important but also inherently difficult as such information may not
even be directly observed. Our tests can help address this issue as they directly reflect
changes in the accuracy of forecasts of the same outcome variable computed as the
“event date” draws closer.

Table 3 shows test results comparing the predictive accuracy of the WEO forecasts
at the four different horizons. Positive values of the test statistics (small p-values)
indicate that the forecast computed at the shortest horizon is more accurate than the
forecasts computed at the longer horizon. We start again with the forecasts of real
GDP growth (Panel A) and first compare the accuracy for the next-year spring and fall
WEO forecasts (h = 1, S versus h = 1, F ) shown in column 1. Regardless of whether
we use the pooled average (top row), single-year time-series cluster or group cluster
test statistics, we find no evidence of a statistically significant improvement in the
Spring versus Fall one-year-ahead WEO forecasts in these comparisons. Interestingly,
however, the time-series cluster test that focuses on the performance prior to, during
and after the Global Financial Crisis strongly rejects the null that the WEO one-
year-ahead Spring and Fall GDP growth forecasts are equally accurate against the
alternative that the Fall forecasts are more accurate. This suggests that the IMF did
improve the accuracy of their one-year-ahead inflation forecasts between the spring
and fall WEO issues during the Global Financial Crisis.

Both the pooled average and region-cluster tests reject the null of no improvement
in predictive accuracy when moving from the prior-year Fall WEO to the current-year
Spring WEO forecasts (h = 1, F vs h = 0, S), with the group-cluster tests indicating
particularly strong rejections. Interestingly, the tests based on the individual-year
time clusters do not reject the null in this case, suggesting that the rejection is driven
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by differences in the average predictive accuracy of the two sets of forecasts within
one or more economic groups.

Comparing the average predictive accuracy of the current-year WEO forecasts
produced in the spring and fall (h = 0, S versus h = 0, F ), all test statistics strongly
reject the null, producing p-values below 0.05 except for a single case (country group
clusters) whose p-value is 0.08. This is unsurprising since a considerable amount of
information relevant for forecasting current-year GDP growth gets released between
April and October, the two dates at which these WEO forecasts are reported. All
tests also very strongly reject the null of no improvement from the longest (h = 1, S)
to the shortest (h = 0, F ) forecast horizon showing that, on a cumulative basis, the
predictive accuracy of the WEO forecasts improves both in specific years, and for
some economic groups.

Table 4 mirrors Table 2 and presents results broken down by the individual eco-
nomic clusters. There is strong evidence that the accuracy of the GDP growth fore-
casts improves across all individual horizons for the Advanced Economies, Emerging
and Developing Europe, and Latin America and the Caribbean. Conversely, we only
see significant improvements in predictive accuracy on a cumulative basis for the CIS
and DMS economies.

Turning to the the predictive accuracy of the inflation forecasts (Table 3, panel
B), the pooled average and time- and regional cluster t-tests computed for the next-
year Spring and Fall forecasts all generate p-values below 0.05. Forecasts of next-
year inflation thus become significantly more accurate between the points where the
prior-year Spring and Fall WEOs are computed. We also see see large improvements
in the comparisons of the WEO next-year fall and current-year spring forecasts of
inflation (second column) and when comparing current-year spring and fall inflation
forecasts (third column). Unsurprisingly, this evidence of significant improvements
in the accuracy of the inflation forecasts at each step of the forecast revision process
translates into highly significant rejections of the null of equal predictive accuracy
for the one-year-ahead spring forecast (h = 1, S) and the current-year fall forecasts
(h = 0, F ).

The results disaggregated by regional cluster (Panel B in Table 4) show evidence
of broad-based and consistent improvements in the accuracy of the WEO inflation
forecasts as the forecast horizon is reduced both across time and across different
groups of economies.
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We conclude from these results that improvements in the accuracy of the WEO
inflation forecasts as the target date draws closer are more widespread across time,
regions and forecast horizons than the improvements observed for the WEO forecasts
of real GDP growth. In particular, the strong improvements in predictive accuracy
observed in next-year Fall versus Spring forecasts suggest that forecast-relevant in-
formation arrives further back in time for the inflation process than for GDP growth
and that the IMF actively use this information to improve their forecasts.

4 Comparing Predictive Accuracy for Individual

Cross-sections

An important limitation of formal comparisons of the (relative) accuracy of different
economic forecasts is that sample sizes tend to be quite short and so the statistical
power of tests based on time-series averages can be quite low. This is particularly
relevant for microeconomic applications that often rely on short surveys, see, e.g.,
Giacomini et al. (2019) and Liu et al. (2019). In addition, inference that relies on
averaging test statistics across time can be affected by non-stationarities in the un-
derlying data generating process which may adversely affect our ability to analyze
time-series averages of loss differentials. Finally, new time-series observations arrive
only slowly when outcomes are measured at a monthly, quarterly, or annual frequency,
reducing our ability to conduct real-time comparisons of predictive accuracy. These
points highlight shortcomings of inference on predictive accuracy that is based on
time-series averages.

In contrast, individual forecasting models can often be used to generate hundreds
or even thousands of cross-sectional forecasts each period, as in the case of forecasts
for individual customers, transactions, product categories, or firms. The presence
of such data with small T and large n suggests the feasibility of comparing the ac-
curacy of a pair of forecasts in a particular time period or over a short period of
time. Conducting such tests requires, however, an understanding of the assumptions
under which we can establish the distribution of cross-sectional averages underly-
ing the test statistics. Most obviously, the loss differentials cannot be too strongly
cross-sectionally dependent–otherwise a CLT will not apply to the cross-sectional test
statistics.
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To more accurately characterize the sources of cross-sectional dependencies in
forecast errors, suppose we can decompose the forecast error of model m, ei,t+h,m =

yi,t+h − ŷi,t+h|t,m, into a common component, ft+h, with factor loadings λim, and an
idiosyncratic component, uit+h,m, so that, for m = 1, 2,

ei,t+h,m = λ′imft+h + ui,t+h,m. (16)

Under this setup, forecast errors are allowed to be affected by the same common
factors, ft+h, but we allow for differences in the factor loadings (λim) across units, i,
and across forecasts, m. Factor loadings, λim, can be either random or fixed; we are
clear on which of these assumptions we make in the analysis below.

4.1 Null Hypotheses

Under the assumed common factor structure in (16), it is not, in general, possible
to use test statistics that rely on a cross-sectional CLT because of the presence of
a common component that does not disappear asymptotically even as n → ∞. To
address this issue, we consider two approaches for testing the null of equal predictive
accuracy in a single cross-section. First, we can conduct a test of an unconditional
null of equal predictive accuracy. As we show below, this type of test requires that
the common factor component that introduces dependence in forecast errors cancels
out in the loss differentials. Second, we can condition on the factor realization and
conduct a conditional test of equal predictive accuracy. This approach will be valid
provided that, conditional on the realized factor, a cross-sectional CLT applies to
the idiosyncratic error components. Without these assumptions, the cross-sectional
averages of loss differentials will not, in general, be asymptotically normal.

First, consider testing the null that the cross-sectional average loss differential at
time t+ h, ∆Lt+h = n−1

∑n
i=1 ∆Li,t+h|t, equals zero in expectation:

Hunc
0,t+h : E(∆Lt+h) = 0. (17)

While the forecasts are only expected to be equally accurate at a single point in time,
t + h, differences in predictive accuracy at that time are hypothesized to balance
out across units, i = 1, ..., n. This could happen, for example, because the errors
of one of the forecasts have small loadings on the common factor, ft+h, but a high

23



idiosyncratic error component, ui,t+h,m, relative to a competing model–a point we
return to in Section 5.

We can also consider testing whether two forecasts are expected to be equally
accurate, at time t+h, conditional on a particular outcome of the factor realizations,
ft+h, as well as the factor loadings {λi1, λi2}ni=1 :

Hcond
0,t+h : E(∆Lt+h | F) = 0, (18)

where F = σ(ft+h, {λi1, λi2}ni=1).
The interpretation of this conditional null is clearly different from that of the

unconditional null in (17) but can be of separate economic interest. For example, we
can use (18) to test whether, conditional on the unusual realizations of the factors
that occurred during the Global Financial Crisis, the predictive accuracy of a set
of alternative forecasts was the same. Or, as the complement to this, we can test
whether the forecasts were equally accurate during more “normal” years.

If, in fact, factor realizations were the main driver of differences in the predictive
accuracy of a pair of forecasts, we can imagine situations in which we reject the null
in (17) without rejecting (18). Conversely, two forecasts could be equally accurate “on
average” in a given period because one forecast is more strongly affected by shocks to
the common factors and less affected by idiosyncratic error shocks, while the reverse
holds for the other forecast and the effects exactly balance out. In this case, we do
not reject the null in (17), whereas the conditional null in (18) is rejected.

For now we do not discuss how we can test if factor loadings are homogeneous or
heterogeneous. However, we note that the test for equal squared bias developed in
the next section can be used to address this question.

4.2 Homogeneous Factor Loadings

Suppose the loadings on the common factors affecting the individual forecast errors in
(16) are the same across the two forecasts so that λi1 = λi2 = λi. Assuming quadratic
error loss, we then have

∆Li,t+h|t = (u2i,t+h,1 − u2i,t+h,2) + 2(ui,t+h,1 − ui,t+h,2)λ′ift+h. (19)

Common unpredictable shocks that are not picked up by any of the forecasts can
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be thought of as satisfying the assumption of homogeneous factor loadings since they
can have a different effect on different units, but will affect the forecasts in the same
way, i.e., λ′i1 = λ′i2. These shocks will, therefore, cancel out from the forecast error
differentials. For example, if the effects of a major event such as the Global Financial
Crisis were unanticipated by both forecasts and affected them in the same amount,
they cancel out from the loss differential.

Under homogeneous factor loadings, the cross-sectional dependence arising from
the forecasts’ exposure to the common factors, ft+h, does not play an important role
in deriving the asymptotics of tests of the null in (17) since λ′ift+h is multiplied by
(ui,t+h,1 − ui,t+h,2). This is assured under the following assumption which requires
(conditionally) independent idiosyncratic error components as well as a Lyapounov
condition:

Assumption 3. Suppose that the loadings are homogeneous, i.e., λi1 = λi2 = λi

for i = 1, ..., n. Conditional on F = σ(ft+h, {λi1, λi2}ni=1), {(ui,t+h,1, ui,t+h,2)}ni=1 is
independent across i with mean zero and with bounded (4 + δ) moments for some
δ > 0. Moreover, min1≤i≤n Var[(ui,t+h,1 − ui,t+h,2) | F ] ≥ c for some constant c > 0

and (∑n
i=1 |λ′ift+h|2+δ

)1/(2+δ)
(
∑n

i=1 |λ′ift+h|2)
1/2

= oP (1).

To test the null of equal expected loss for the pooled average in (17), consider the
test statistic

Qt+h =
n1/2∆Lt+h|t√

n−1
∑n

i=1

(
∆Li,t+h|t

)2 . (20)

Under the assumption of pair-wise homogeneous factor loadings, (19) shows that
testing the null of equal predictive accuracy in period t + h amounts to testing that
E(u2i,t+h,1 − u2i,t+h,2) = 0. This is easily accomplished under Assumption 3 which
ensures independence across i for (ui,t+h,1, ui,t+h,2) so that asymptotic normality can
be established for Qt+h in (20).17

Using Assumption 3, we can show the following result:
17Alternatively, we can test this null under assumptions of stationarity which allows us to exploit

time-series variation in the factors. Assumptions of stationarity and weak serial dependence gets us
back to using the test statistic in (5). Of course, assuming stationarity and calculating time-series
averages in this manner means that we cannot meaningfully use (20) to address how the forecasts
performed during specific periods such as the global financial crisis.
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Theorem 6. Suppose Assumption 3 holds. Then under the null of equal expected
cross-sectional predictive accuracy, Hunc

0,t+h in (17), we have

lim sup
n→∞

P
(
|Qt+h| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

Theorem 6 shows that homogeneous factor loadings lead to a simple test of the null
of equal expected loss for the pooled average using data only on a single cross-section.
Moreover, the test statistic follows a Gaussian distribution in large cross-sections.

For now, we do not go into details of how the assumption of homogeneous loadings
can be tested. However, as we show in Section 5, our approach for testing the null
in (17) remains valid as long as n−1

∑n
i=1[(λ

′
i,1ft+h)

2 − (λ′i,2ft+h)
2] = 0. Moreover,

as we show below, we can test that this condition holds using the procedure from
Theorem 9, Theorem 11 or the test statistic in (44). depending on how one estimates
the dependence structure in the forecast errors.

4.3 Heterogeneous Factor Loadings

Next, consider the case with heterogeneous factor loadings for the forecast errors, i.e.,
λi,1 6= λi,2. For this case, the expression in (19) is generalized to

∆Li,t+h|t =
[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]

+
[
u2i,t+h,1 − u2i,t+h,2 + 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2)

]
. (21)

When the factor loadings differ for the forecasts, equation (21) shows that
the relative predictive accuracy in period t + h contains a systematic risk
component, E

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]
. Even if ft+h is independent of the

factor loadings, {(λi,1, λi,2)}ni=1, and these loadings are independent across i,
n−1/2

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]
is asymptotically normal only conditional on

ft+h. This suggests conducting a test of equal expected predictive accuracy con-
ditional on the factor realization as is done in (18).

To see how the conditional null in (18) can be tested, again let F =

σ(ft+h, {λi1, λi2}ni=1) and assume that E(ui,t+h,1 | F) = E(ui,t+h,2 | F) = 0. De-
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fine

ξi,t+h =
(
u2i,t+h,1 − u2i,t+h,2

)
−E

(
u2i,t+h,1 − u2i,t+h,2 | F

)
+2(λ′i,1ft+hui,t+h,1−λ′i,2ft+hui,+ht,2).

Using equation (21), we have

∆Lt+h − E(∆Lt+h | F) = n−1
n∑
i=1

ξi,t+h. (22)

The ideal variance estimate for the object in (22) is n−1
∑n

i=1 ξ
2
i,t+h. However, at

the unit level, we only have data on ei,t+h,m and hence are limited to computing
n−1

∑n
i=1(∆Li,t+h|t −∆Lt+h)

2. Consider the following test statistic

Qt+h =

√
n∆Lt+h√

n−1
∑n

i=1(∆Li,t+h|t −∆Lt+h)2
. (23)

To establish properties of the test statistic in (23), we need a set of regularity
conditions which we summarize in the following assumption:

Assumption 4. Conditional on F = (ft+h, {λi1, λi2}ni=1), {(ui,t+h,1, ui,t+h,2)}ni=1 is
independent across i with mean zero and bounded (4 + δ) moments for some δ > 0.
Moreover, min1≤i≤n Var[ξi,t+h | F ] ≥ c for some constant c > 0.

Using this assumption, we can now test the null n−1
∑n

i=1E
(
∆Li,t+h|t | F

)
= 0

or, equivalently, establish a confidence interval for E(∆Lt+h | F):

Theorem 7. Suppose Assumption 4 holds. Then, under the null hypothesis in (18),
the following result holds for the test statistic in (20)

lim sup
n→∞

P
(
|Qt+h| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

Results based on the test statistic in (23) can be interpreted in two ways. First, as
explained above, they can be viewed as tests of the null hypothesis H0 : E(∆Lt+h |
F) = 0. Second, if we assume that the factor loadings {(λi,1, λi,2)}ni=1 are random,
independent across i and independent of ft+h, we can use the test statistic in (23)
to test H0 : E(∆Lt+h | ft+h) = 0 instead of testing E(∆Lt+h | F) = 0, with
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the latter also conditioning on the factor loadings. Testing the former hypothesis
(E(∆Lt+h | ft+h) = 0) rather than the latter–and, hence not conditioning on the
factor loadings (λi,1 and λi,2)–introduces an additional term in the numerator of (23)

E(∆Lt+h | F)− E(∆Lt+h|t | ft+h)

= f ′t+h

(
n−1

n∑
i=1

[
λi,1λ

′
i,1 − λi,2λ′i,2 − E(λi,1λ

′
i,1 − λi,2λ′i,2)

])
ft+h.

However, the denominator in (23) still overestimates the variance of the numerator
of the test statistic under the null. As a result, Theorem 7 remains valid even for
testing the null E(∆Lt+h | ft+h) = 0 and the critical values remain the same.

Under either interpretation, it follows from (21) that the variance estimate in (23)
is conservative. Under the first interpretation, this follows because the variance esti-
mate takes into account variation in the factor structure and in E(u2i,t+h,1 − u2i,t+h,2).
Under the second interpretation, the variance estimate still includes cross-sectional
variations in E(u2i,t+h,1 − u2i,t+h,2). This seems unavoidable without introducing addi-
tional modeling assumptions that impose structure on this variation.18

4.4 Empirical Results for the Cross-sectional Tests

We next illustrate empirically how our new cross-sectional tests of equal predictive
accuracy can be used to compare the WEO and CE forecasts introduced earlier. To
this end, Figure 2 plots time-series of the cross-sectional average test statistics for
the null of equal predictive accuracy (17) for individual years. We show two lines
corresponding to the test statistics assuming either homogeneous factor loadings,
(20) for testing (17), or heterogeneous loadings, (23) for testing (18). The results use
the current-year spring forecasts, h = 0, S in the WEO versus CE comparison and
next-year Fall WEO forecasts in the comparison with the autoregressive forecasts.
All empirical results assume the presence of two common factors.

The first point to notice is that, in most years, the two sets of test statistics
in (20) and (23) are very similar even though they test potentially very different
hypotheses and deal with factor-related shocks in very different ways. The reason for

18Essentially, we have a CLT for independent but non-identically distributed variables, ∆Li,t+h|t−
E
[
∆Li,t+h|t|ft+h

]
, but the exact variance is difficult to estimate because E

[
∆Li,t+h|t|ft+h

]
cannot

be estimated from the observed data.
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this similarity is that the tests only differ with respect to which terms they include
in the denominator and this turns out to be of little importance. Turning to the
individual test statistics, the top left panel shows that the WEO forecasts of real
GDP growth were significantly more accurate than the corresponding CE forecasts
only in one year during our sample which happens to be the peak of the global
financial crisis. Conversely, the WEO forecasts were never significantly less accurate
than the CE forecasts..

Compared to the AR(1) forecasts (top right panel), the Fall next-year WEO fore-
casts of real GDP growth were significantly more accurate during the Global Financial
Crisis. Reassuringly, the WEO forecasts of GDP growth are not less accurate than
the autoregressive forecasts in any years during our sample.

Figure 3 plots disaggregate t-statistics for comparing the null of equal expected
squared error loss for WEO versus CE (rows 1 and 3) or WEO versus AR forecasts
(rows 2 and 4). The test statistics are computed for three time clusters, namely 1995-
2006, 2007-2009 (Global Financial Crisis), and 2010-16 and for five to seven groups
of countries.

First consider the GDP growth forecasts (top two rows). We cannot reject the null
of equal predictive accuracy of the WEO and CE forecasts for any of the economic
groups during the early sample (1995-2006). Conversely, the WEO forecasts were
significantly more accurate than the CE forecasts during the GFC (2007-2009) and
for the Latin America and Caribbean and dms groups in the last part of the sample
(2010-16). Measured against the AR forecasts, there is little to suggest that the WEO
forecasts were significantly more accurate for any of the clusters in the early sample
(1995-2006). However, the WEO forecasts were significantly more accurate than the
AR forecasts during the financial crisis for three of seven regions. In the last part of
the sample (2010-2016), the WEO forecasts of GDP growth for advanced economies
and emerging and developing Europe were also significantly more accurate than their
autoregressive counterparts.

Turning to the inflation forecasts (bottom two panels in Figure 2), the WEO
forecasts are significantly more accurate than the CE forecasts in 2000, 2007-09 and,
again, in 2013 and 2016. We find no years in which the CE inflation forecasts were
significantly more accurate than their WEO counterparts. Moreover, the WEO infla-
tion forecasts performed significantly better than the AR forecasts in most years, a
notable exception being 2008 for which the reverse holds.
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Next, consider the disaggregate inflation forecasts presented in the bottom two
rows of Figure 3. The key finding here is that while the WEO inflation forecasts for
advanced economies were not significantly more accurate than the CE forecasts prior
to and after the financial crisis, they were far more accurate (with a t-statistic of 10)
during the crisis. WEO inflation forecasts also fared well against the CE forecasts
for the other groups during the crisis. Compared to the autoregressive forecasts,
the WEO forecasts were significantly more accurate for all economic groups both in
the early and late sample (1995-2006, 2010-16), but only so for advanced economies
during the crisis.

These plots demonstrate a number of points. First, the results are very robust to
whether we assume homogeneous or heterogeneous loadings on the common factors
and test the null of equal cross-sectional average predictive accuracy unconditionally
or conditional on the factor loadings. Second, there is sufficient year-on-year variation
in the cross-sectional tests to allow us to pinpoint those years in which we can reject
that two forecasts are equally accurate. For example, the sometimes very different
performance of the test statistics computed for the Global Financial Crisis shows that
the WEO forecasts did not uniformly dominate (or get dominated by) the CE or AR
forecasts. Third, disaggregating by economic region or development stage and crisis
and non-crisis years, we can gain important insights into which forecasts perform best
for which types of economies across different economic states.

4.4.1 Predictive Accuracy at Different Horizons

Figure 4 plots time series of the single-year cross-sectional test statistics, now compar-
ing the WEO forecasts at long and short horizons. Because the test statistics in (20)
and (23), are again extremely similar regardless of which methodology we use, we only
present results for the conditional test that allows for heterogeneous factor loadings
and show the outcomes for GDP growth and inflation forecasts in the same panels.
First consider the one-year-ahead spring versus fall forecasts of GDP growth (top
left corner). As we move forward in time from the spring to the fall WEO forecasts,
we find no years in which the GDP growth forecasts become significantly less accu-
rate. Conversely, we see significant improvements in predictive accuracy at shorter
horizons in 2002 and, again, during and after the GFC. Larger improvements in the
accuracy of the WEO GDP growth forecasts emerge when moving from prior-year
fall predictions to current-year spring forecasts (top right panel) and, even more so,
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from current-year spring to current-year fall forecasts (bottom left panel), with many
of the individual years generating t-statistics above two. Finally, we see evidence of
significant improvements in predictive accuracy when moving from next-year spring
to current-year fall forecasts of GDP growth (bottom right panel) for almost all years
with exception of 1997-1998.

Next, consider the corresponding WEO inflation forecasts recorded at the four
different horizons. With one exception (the 2009 comparison of the one-year-ahead
fall and spring WEO inflation forecasts), we do not find any years with significant
deterioration in predictive accuracy as the forecast horizon is reduced. Conversely,
the WEO inflation forecasts tend to become significantly more accurate in individual
years (as well as overall) as we move from the one-year Fall to the current-year
Spring or from the current-year Spring to the current-year Fall forecasts and more
information relevant for predicting inflation becomes available.

5 Decomposing Differences in Forecasting Perfor-

mance

Under heterogeneous factor loadings, the conditionally expected cross-sectional aver-
age loss differential depends on differences in the two forecasts’ factor loadings times
the factor realizations, (λ′i,1ft+h)

2 − (λ′i,2ft+h)
2, as well as differences in the squared

idiosyncratic error terms, u2i,t+h,1 − u2i,t+h,2, both averaged cross-sectionally.
To help interpret the economic sources of differences in forecasting performance,

we can quantify the magnitude of these components. For example, we might be
interested in testing whether differences in two forecasts’ accuracy during the Global
Financial crisis (2007-2008) was due to differences in their exposure (loadings) to a
set of common factors that took on unusually large values. For example, one forecast
may have been particularly exposed to financial market performance. Alternatively,
differences in predictive accuracy could be due to differences in the variance of the
idiosyncratic errors.

This section discusses how to separately conduct inference on the squared condi-
tional bias and idiosyncratic variance components.
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5.1 Decomposing the Conditional Squared Error Loss

Using equation (21), we can express the (cross-sectional) average conditional squared
error loss difference as the sum of the average difference in squared conditional bias
and the average difference in the conditional idiosyncratic error variance:

n−1
n∑
i=1

E
(
∆Li,t+h|t | F

)
︸ ︷︷ ︸

E(∆Lt+h | F) =

n−1
n∑
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]

︸ ︷︷ ︸
bias2t+h +

n−1
n∑
i=1

E
(
u2i,t+h,1 − u2i,t+h,2 | F

)
︸ ︷︷ ︸ .

E
(
∆2
ut+h | F

)
(24)

The terms on the right hand side of the decomposition in (24) are unobserved,
so we need to impose more structure on the data generating process to be able to
separately identify these components.

Suppose the factor realizations, ft+h, are independent of the factor loadings,
(λi,1, λi,2) and, moreover, that ft+h is stationary. In this case, we can compute
the difference in the relative predictive accuracy of the forecasts at each point in
time and relate this to changes in the relative accuracy of the idiosyncratic part,
E(u2i,t+h,1 − u2i,t+h,2). Moreover, provided that n−1

∑n
i=1E[(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2] is

time invariant, we can use time series data to consistently estimate this quantity and
characterize the asymptotics of the estimate.

Conversely, if ft+h is nonstationary and E(u2i,t+h,1 − u2i,t+h,2) is allowed to change
with t + h, we cannot identify n−1

∑n
i=1E[(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2]. However, since

we can estimate (λ′i,1ft+h)
2 − (λ′i,2ft+h)

2 from time-series data, we can still perform
tests on n−1

∑n
i=1E(u2i,t+h,1 − u2i,t+h,2).19

Building on these observations, note that

∆Lt+h − bias2t+h = ∆
2

ut+h +
2

n

n∑
i=1

[
λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2

]
, (25)

where ∆
2

ut+h = n−1
∑n

i=1

(
u2i,t+h,1 − u2i,t+h,2

)
.

Provided that n is relatively large so the last term on the right side of equation (25)
is small, the bias-adjusted average loss differential on the left hand side of (25) can
be expected to be a good estimate of the difference in the two forecasts’ idiosyncratic

19Notice that even if we know the random variables {(λ′i,1ft+h)2 − (λ′i,2ft+h)2}ni=1, this does not
mean that we can estimate n−1

∑n
i=1E[(λ′i,1ft+h)2 − (λ′i,2ft+h)2] if ft+h is non-stationary.
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variance at time t, E
(
∆2
ut+h | F

)
.20

We next discuss three strategies for computing (λ′i,1ft+h)
2 − (λ′i,2ft+h)

2. The first
exploits group patterns in factor loadings and so is applicable when factor loadings
are homogeneous within certain groups of units. This approach poses no limit on
the number of factors affecting the forecast errors but requires that clusters can be
identified within which there is little or no heterogeneity in the factor loadings. The
second approach uses the common correlated effects (CCE) method of Pesaran (2006).
While this approach does not impose tight restrictions on factor loadings, in practice
it puts limits on the number of common factors driving the forecast errors. The
third approach, principal components (PCA), is similar to the CCE approach but
does not impose tight bounds on the number of common factors in the forecast error
differentials.

5.2 Clustering in Factor Loadings

It is common in empirical applications to have data on units that share certain ob-
servable characteristics or features which make them more similar than randomly
selected units. For example, advanced economies may react in a broadly similar way
to certain supply shocks which, in turn, affect emerging or developing economies in
a very different manner. Or, the effect of an interest rate increase on the default
probability of credit card holders may be quite different across high, medium, and
low income households, yet be broadly similar within these three categories.

In this subsection we develop a class of estimators using the identifying assumption
that clusters of cross-sectional units share the same factor loadings, while allowing
factor loadings to differ across clusters. More formally, suppose that a set of K
clusters

⋃K
k=1Hk = {1, ..., n} form a partition of all n units so that each unit belongs

to one unique cluster, Hk, i.e., Hj∩Hl = ∅ with nk = |Hk| elements in the kth cluster.
We assume that the cluster membership for each unit is known ex ante and so is not
determined endogenously from the data. Moreover, suppose that the factor loadings
(λi,1, λi,2) can differ across clusters (λi,1, λi,2) 6=(λj1,λj2) for i ∈ Hk and j ∈ Hl, but
are homogeneous within clusters

(λi,1, λi,2) = (λ1,(k), λ2,(k)) for all i ∈ Hk. (26)

20Of course, we do not directly observe the idiosyncratic errors and factors. However, since ∆Lt+h

is observed, from (25) we only need to estimate the factor-induced squared bias term, bias2t+h.
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5.2.1 Testing Equal Idiosyncratic Error Variances

We first discuss testing the conditional null given Fof equal average idiosyncratic
error variance for the two forecasts for all units in cluster k:

H idio
0 : n−1k

∑
i∈Hk

E(u2i,t+h,1 − u2i,t+h,2 | F) = 0. (27)

To test this null, we need to construct an estimate of the idiosyncratic variance within
each cluster. To see how group patterns in factor loadings allow us to identify the
idiosyncratic variance component, ∆

2

ut+h, define the errors from the two forecasts,
averaged within each cluster, as

e1,k,t+h ≡ n−1k
∑
i∈Hk

(
yi,t+h − ŷi,t+h|t,1

)
= λ′1,(k)ft+h + n−1k

∑
i∈Hk

ui,t+h,1,

and
e2,k,t+h ≡ n−1k

∑
i∈Hk

(
yi,t+h − ŷi,t+h|t,2

)
= λ′2,(k)ft+h + n−1k

∑
i∈Hk

ui,t+h,2.

Squaring these within-cluster average forecast errors and computing their differ-
ence, we have

e21,k,t+h−e22,k,t+h = (λ′1,(k)ft+h)
2−(λ′2,(k)ft+h)

2+

(
n−1k

∑
i∈Hk

ui,t+h,1

)2

−

(
n−1k

∑
i∈Hk

ui,t+h,2

)2

+ 2λ′1,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,1 − 2λ′2,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,2. (28)

Let ∆u
2

t+h,k be the average loss differential for cluster k, i.e., ∆Lt+h,k ≡
n−1k

∑
i∈Hk

∆Li,t+h, adjusted for the difference (e21,k,t+h − e21,k,t+h):

∆u
2

t+h,k = ∆Lt+h,k − (e21,k,t+h − e21,k,t+h). (29)

Using this result, we can use the following test statistic to test H idio
0 in (27):

Sk =

√
nk∆u

2

t+h,k√
n−1k

∑
i∈Hk

(∆Li,t+h −∆Lt+h,k)2
. (30)
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Theorem 8. Suppose Assumption 4 holds. Then under the null hypothesis H idio
0 :

n−1k
∑

i∈Hk
E(u2i,t+h,1 − u2i,t+h,2 | F) = 0, we have

lim sup
nk→∞

P
(
|Sk| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

Alternatively, we can test that the null of equal expected squared idiosyncratic
forecast errors holds on average, i.e., across all units though not necessarily within
each cluster:

H idio−av
0 : n−1

n∑
i=1

E(u2i,t+h,1 − u2i,t+h,2 | F) = 0. (31)

To this end, let ∆u
2

t+h =
∑K

k=1
nk

n
∆u

2

t+h,k be the cluster-weighted average differ-
ence in squared idiosyncratic forecast errors, and consider the test statistic

Sc =

√
n∆u

2

t+h√
n−1

∑K
k=1

∑
i∈Hk

(∆Li,t+h −∆Lt+h,k)2
. (32)

We use Sc to test the null in (31) of equal average idiosyncratic forecast error
variance:

Corollary 1. Suppose Assumption 4 holds and assume that limn→∞ nk/n > 0 for all
1 ≤ k ≤ K. Then under the null in (31), we have

lim sup
n→∞

P
(
|Sc| > z1−α/2

)
≤ α,

where z1−α/2 is the (1− α/2) quantile of a N(0, 1) variable.

For example, using Corollary 1, we can compute a 1 − α confidence interval for
the squared idiosyncratic forecast errors ∆u

2

t+h as

∆u
2

t+h ±
z1−α√
n

√√√√n−1
K∑
k=1

∑
i∈Hk

(∆Li,t+h −∆Lt+h,k)2. (33)
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5.2.2 Testing Equal Squared Biases

Next, consider the squared bias component of the expected loss differential in (24).
Under the assumed homogeneous factor loadings within clusters in (26), we have

n−1
n∑
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]

=
K∑
k=1

nk
n

(
(λ′1,(k)ft+h)

2 − (λ′2,(k)ft+h)
2
)
.

We can estimate (λ′1,(k)ft+h)
2− (λ′2,(k)ft+h)

2 by e21,k,t+h− e21,k,t+h. By (28), we have

e21,k,t+h − e21,k,t+h = (λ′1,(k)ft+h)
2 − (λ′2,(k)ft+h)

2

+ 2λ′1,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,1 − 2λ′2,(k)ft+hn
−1
k

∑
i∈Hk

ui,t+h,2 +OP (n−1k ).

To test the null of equal squared bias, we use the following test statistic:

Bn,1 =

√
n
∑K

k=1
nk

n
(e21,k,t+h − e22,k,t+h)

2
√
n−1

∑K
k=1

∑
i∈Hk

(e1,k,t+hûi,t+h,1 − e2,k,t+hûi,t+h,2)2
, (34)

where, for i ∈ Hk, ûi,t+h,1 = yi,t+h−ŷi,t+h|t,m1−e1,k,t+h and ûi,t+h,2 = yi,t+h−ŷi,t+h|t,m2−
e2,k,t+h. We can show that Bn,1

(
n−1

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
])
→d N(0, 1), and

so:

Theorem 9. Suppose Assumption 3 holds and assume that limn→∞ nk/n > 0 for all
1 ≤ k ≤ K. Then under H0 : n−1

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]

= 0, we have

lim sup
n→∞

P
(
|Bn,1| > z1−α/2

)
≤ α.

Note that the null of equal squared bias relates to our earlier discussion of homo-
geneous versus heterogeneous factor loadings: If factor loadings are the same across
two sets of forecasts, their squared bias differential should also be close to zero.

Using Theorem 9, a 1 − α confidence interval for
n−1

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]
is

K∑
k=1

nk
n

(e21,k,t+h − e22,k,t+h)±
z1−α/2√

n

√√√√n−1
K∑
k=1

∑
i∈Hk

(e1,k,t+hûi,t+h,1 − e2,k,t+hûi,t+h,2)2.

(35)
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Note that because Bn,1

(
n−1

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
])
→d N(0, 1), the confi-

dence interval is asymptotically exact.

5.3 Factor Structure Estimated by CCE

In many empirical applications, a cluster structure may not be suitable either because
units are not easily assigned to individual clusters or because factor loadings are not
homogeneous within clusters. For such applications, a more traditional factor setting
may be more appropriate. To this end, suppose we observe a panel of forecast errors
{ei,s+h,m}1≤i≤n, 1≤s≤T generated according to the factor model in (16), ei,s+h,m =

λ′i,mfs+h + ui,s+h,m, where m = 1, 2, λi,m ∈ Rr×v and fs+h ∈ Rr with v ≥ r, so
the number of observables, v, is at least equal to the number of factors, r. The
requirement that v ≥ r implies that if we do not include observables other than
the two sets of forecast errors, we can allow for at most two factors. Conversely,
including more observable variables that are driven by the same factors lets us relax
this restriction and allow for additional factors.

5.3.1 Difference in Idiosyncratic Error Variances

Let ei,s+h = (ei,s+h,1, ei,s+h,2)
′ ∈ R2 and ui,s+h = (ui,s+h,1, ui,s+h,2)

′ ∈ R2 be 2 × 1

vectors of forecast errors and idiosyncratic residuals and define the cross-sectional
averages ēs+h = n−1

∑n
i=1 ei,s+h, ūs+h = n−1

∑n
i=1 ui,s+h and λ̄ = n−1

∑n
i=1 λi with

λi = (λi,1, λi,2) ∈ Rr×2. Assuming that we can invoke a CLT for the cross-sectional
average of the idiosyncratic shocks, ūs+h will be small and ēs+h ≈ λ̄′fs+h can be
used as a proxy for the unobserved factors. This is the common correlated effects
(CCE) idea proposed in Pesaran (2006). In turn, we can estimate the individual
factor loadings, λim, from a time-series regression

λ̂′i =

(
T∑
s=1

ei,s+hē
′
s+h

)(
T∑
s=1

ēs+hē
′
s+h

)−1
.

Let λi,1 denote the first column of λi, with similar notations used for λ̂i,1 and λ̂i,2.
Consider the following regularity conditions:

Assumption 5. The following conditions hold for m = 1, 2:
(1) the smallest eigenvalue of λ̄λ̄′ is bounded away from zero.
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(2) {ui,t+h,m}ni=1 has mean zero and is independent across i.

The first part of Assumption 5 implies that the number of factors cannot exceed
the dimension of ei,s+h–otherwise the smallest eigenvalue of λ̄λ̄′ is zero.

Using Assumption 5, we can characterize the difference between the average
squared forecast errors and the average squared factor values, both weighted by the
factor loadings, λ′i :

Lemma 1. Under Assumption 5, we have

n−1/2
n∑
i=1

[(λ̂′i,1ēt+h)
2 − (λ′i,1ft+h)

2] = 2n−1/2ū′t+hλ̄
′(λ̄λ̄′)−1

(
n∑
i=1

λi,1λ
′
i,1

)
ft+h + oP (1).

Next, consider the null that the difference in the squared idiosyncratic variance
component of the forecast errors equals zero:

H0 : n−1
n∑
i=1

E(u2i,t+h,1 − u2i,t+h,2 | F) = 0. (36)

To test this hypothesis, we use the following test statistic

Scce =

√
n∆û

2

t+h√
n−1

∑n
i=1(∆Li,t+h|t − [(λ̂′i,1ēt+h)

2 − (λ′i,2ēt+h)
2]− ĉt+h + û′i,t+hD̂t+h)2

, (37)

where ĉt+h = n−1
∑n

i=1(∆Li,t+h|t − [(λ̂′i,1ēt+h)
2 − (λ′i,2ēt+h)

2] + û′i,t+hD̂t+h),

∆û
2

t+h = n−1
n∑
i=1

∆Li,t+h − n−1
n∑
i=1

[(λ̂′i,1ēt+h)
2 − (λ̂′i,2ēt+h)

2] (38)

and

D̂t+h = n−1
n∑
i=1

(λ̂i,1λ̂
′
i,1 − λ̂i,2λ̂′i,2)ēt+h. (39)

Using these definitions, we now have the following result:

Theorem 10. Suppose Assumption 5 holds. Then under the null hypothesis
n−1

∑n
i=1E(u2i,t+h,1 − u2i,t+h,2 | F) = 0, Scce →d N(0, 1).

Using that Scce follows a standard Gaussian distribution asymptotically, we can
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compute a 1− α confidence interval for n−1
∑n

i=1E(u2i,t,1 − u2i,t,2 | F) as

∆û
2

t+h±
z1−α√
n

√√√√n−1
n∑
i=1

(∆Li,t+h|t − [(λ̂′i,1ēt+h)
2 − (λ′i,2ēt+h)

2]− ĉ+ û′i,t+hD̂t+h)2 (40)

5.3.2 Squared Bias Differences

Next, consider the squared bias component of the MSE loss differential. Define

Dt+h = λ̄′(λ̄λ̄′)−1

(
n−1

n∑
i=1

[λi,1λ
′
i,1 − λi,2λ′i,2]

)
ft+h.

Using

√
n

(
n−1

n∑
i=1

[
(λ̂′i,1ēt+h)

2 − (λ̂′i,2ēt+h)
2
]
− n−1

n∑
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
])

= 2n1/2ū′t+hDt+h+oP (1),

it follows that n−1
∑n

i=1

[
(λ̂′i,1ēt+h)

2 − (λ̂′i,2ēt+h)
2
]
is a
√
n-consistent estimator for the

average difference in the squared bias differential, n−1
∑n

i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]
,

where the estimation error is asymptotically 2ū′t+hDt+h. To construct tests for the
squared bias difference, consider the following test statistic

Bn,2 =
n−1/2

∑n
i=1

[
(λ̂′i,1ēt+h)

2 − (λ̂′i,2ēt+h)
2
]

2
√
n−1

∑n
i=1(û

′
i,t+hD̂t+h)2

, (41)

where, again, ûi,t+h = ei,t+h − λ̂′iēt+h. The following result characterizes the distribu-
tion of this statistic:

Theorem 11. Suppose that Assumption 5 holds. Then under the null hypothesis
n−1

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]

= 0, we have Bn,2 →d N(0, 1).

Using Theorem 11, we can construct a confidence interval for the average squared
bias differential, n−1

∑n
i=1

[
(λ′i,1ft+h)

2 − (λ′i,2ft+h)
2
]
as

n−1
n∑
i=1

[
(λ̂′i,1ēt+h)

2 − (λ̂′i,2ēt+h)
2
]
±
z1−α/2√

n

√√√√n−1
n∑
i=1

(û′i,t+hD̂t+h)2. (42)
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Again, this confidence interval is asymptotically exact.

5.4 Factor Structure Estimated by PCA

We next describe an alternative to the CCE approach in Section 5.3 which uses
principal components analysis (PCA) to extract the common factors. A notable
advantage of the PCA approach is that, unlike the CCE approach, the number of
observed forecast errors does not pose an upper bound on the number of factors. In
practice, this means that we can allow for more factors under the PCA approach.

Define the difference in the idiosyncratic forecast error variance

∆û
2

t+h = n−1
n∑
i=1

∆Li,t+h − n−1
n∑
i=1

[
(λ̂′i,1f̂t+h)

2 − (λ̂′i,2f̂t+h)
2
]
. (43)

As before, let f̂t+h and λ̂i be the estimated factors and factor loadings obtained
using PCA estimation. Then we have the following results on ∆û

2

t+h:

Lemma 2. Under Assumptions A-F in Bai (2003), we have

√
n

[
∆û

2

t+h − n−1
n∑
i=1

E(u2i,t+h,1 − u2i,t+h,2 | F)

]

= n−1/2
n∑
i=1

[
(u2i,t+h,1 − u2i,t+h,2)− E(u2i,t+h,1 − u2i,t+h,2 | F) + 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2)

]
+ oP (1).

Notice that we no longer have a term involving Dt+h. Depending on the dis-
tribution of the idiosyncratic term, the PCA approach might yield a more efficient
estimator than the CCE approach since it does not require us to estimate this term.

From this point, all steps in the inference procedure are exactly the same as
those in Section 5.3, except that (λ̂′i,1ēt+h, λ̂

′
i,2ēt+h) is replaced by the PCA estimate

(λ̂′i,1f̂t+h, λ̂
′
i,2f̂t+h) and we set D̂t+h = 0. Specifically, in Equations (37), (38) and

(40), we replace (λ̂′i,1ēt+h, λ̂
′
i,2ēt+h) with the PCA estimate (λ̂′i,1f̂t+h, λ̂

′
i,2f̂t+h) and set

D̂t+h = 0. We also replace Bn,2 defined in (41) with the following

B̃n,2 =
n−1/2

∑n
i=1

[
(λ̂′i,1f̂t+h)

2 − (λ̂′i,2f̂t+h)
2
]

2
√
n−1

∑n
i=1(λ̂

′
i,1f̂t+hûi,t+h,1 − λ̂′i,2f̂t+hûi,t+h,2)2

, (44)
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where ûi,t+h,m = ei,t+h,m − λ′i,mft+h.

5.5 Empirical Results

Figure 5 uses a set of heat diagrams to show the annual values of the cross-sectional
tests statistics used to test the null of equal idiosyncratic variances (36) for the WEO
versus CE forecasts or the WEO versus autoregressive forecasts. Each panel corre-
sponds to a separate pair-wise comparison. The heat diagrams use blue to indicate
years where the WEO forecasts have a smaller idiosyncratic variance component than
the CE or autoregressive forecasts with red color indicating the reverse. Diamonds
indicate years in which the test statistic is significant at the 5% level, using a two-
sided test. Each diagram contains three rows showing results based on the cluster,
CCE, and PCA approaches, respectively.

First consider the comparison of the WEO versus CE forecasts of real GDP growth
(top panel). Although the test statistics in (32) and (37) fluctuate around zero in
most years without being statistically significant, there is a clear trend from mostly
negative values in the early part of the sample up to 2002 towards positive values
later on in the sample. This suggests that the WEO forecasts of real GDP growth
went from initially having a larger idiosyncratic error variance to subsequently having
a smaller idiosyncratic variance than the CE forecasts in each and every year since
2008. Comparing the WEO and AR(1) forecasts (second panel), the idiosyncratic
error variance component is again seen to be smaller for the WEO forecasts for the
majority of years in our sample and this differential is statistically significant in some
years during the Global Financial Crisis and its aftermath, 2008-2011.

Turning to the inflation forecasts (lower panels in Figure 5), idiosyncratic error
variances are quite similar for the WEO and CE forecasts and we continue to find
in most years that we cannot reject the null that the magnitude of the idiosyncratic
variance of the WEO and CE forecasts is identical. We find strong evidence, how-
ever, that the WEO inflation forecasts have a significantly smaller idiosyncratic error
variance than the AR forecasts in most years–particularly based on the test statistic
(32) that uses the cluster approach–and there is no single year where the AR forecasts
produce a significantly smaller idiosyncratic error variance than the WEO inflation
forecasts.

Figure 6 shows the outcome of cross-sectional comparisons of the squared bias
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component in the errors of the WEO, CE and autoregressive forecasts using the test
statistics in (34), (41) and (44). For the GDP growth series (top two panels), we
continue to find that the squared bias difference between the WEO and CE forecasts
is insignificant in most years although again with a trend towards the squared bias
of the WEO forecasts becoming smaller relative to the CE forecasts in the second
half of the sample. Interestingly, the squared bias of the WEO GDP growth forecasts
was significantly smaller than for the CE forecasts in 2008 and 2009, i.e., during
the GFC. Comparing the squared bias components of the WEO and AR(1) GDP
growth forecasts (second panel), we find that the squared bias is bigger for the AR(1)
forecasts for most years in our sample, though not significantly so.

For the inflation series (bottom two panels), there is systematic evidence that the
WEO forecasts had a smaller squared bias than the CE forecasts in most years. In
fact, the WEO forecasts have a significantly smaller squared bias component than
the CE forecasts in seven years under the test statistic that relies on the PCA factor
model, although the evidence is weaker when we use the two other approaches to
extract the squared bias component. Finally, there is strong evidence that the WEO
inflation forecasts have a significantly smaller squared bias than the autoregressive
inflation forecasts during most years in our sample (a notable exception being 2008),
regardless of which method is used to extract the bias.

To summarize these findings, Table 5 reports the mean and median values of the
idiosyncratic error variance and squared bias components for the CE versus WEO
forecasts, with positive values indicating that the variance (or bias) of the CE forecasts
errors exceeds that of the WEO forecast errors. To reduce the effect of outliers, we
have standardized the forecast errors before computing cross-sectional averages. For
GDP growth (Panel A), the difference in the average idiosyncratic variance is quite
small, ranging between 5% and 16%, although this value grows far higher during the
GFC. Differences in squared biases are also, on average, quite small, ranging from
-2% to 9%, although again these values are substantially higher (and positive) during
the GFC. For inflation (Panel B) we find substantially larger (positive) differences in
the idiosyncratic variance and squared bias components, both on average and during
the GFC period.

These results confirm our original finding that the accuracy of the WEO and CE
forecasts of real GDP growth is comparable during our sample and show that this
can be explained by idiosyncratic error variance and squared bias terms that were of
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similar magnitude. Conversely, the significantly lower mean squared forecast errors
for the WEO inflation forecasts compared to the CE inflation forecasts results from
the WEO forecasts having both a substantially lower idiosyncratic error variance and
a lower squared bias.

6 Conclusion

This paper develops new methods for testing the null of equal predictive accuracy in
the context of panel data in which we observe time series of forecasts and outcomes of
multiple units. We show that such data structures allow us to compare the (relative)
performance of alternative forecasts in a way that exploits both the time series and
cross-sectional dimensions. In situations where forecast errors are cross-sectionally
correlated as captured by a set of common factors, we show that inference about equal
predictive accuracy can be conducted under a set of assumptions about exposures
to the common factors. In particular, we show that the null of equal predictive
accuracy can be conducted in settings with a small time-series dimension–even just
a single period–and a large cross-sectional dimension if either (i) factor loadings are
homogeneous across units so that the effect of common factors on forecast errors
cancels out in loss differentials; or (ii) we condition on factor realizations and conduct
a test of equal predictive accuracy, given these factors.

We illustrate our tests in an empirical analysis that compares the accuracy of the
World Economic Outlook forecasts reported by the IMF to forecasts from a private
organization (Consensus Economics) as well as forecasts generated by a simple autore-
gressive model. Our new tests identify important differences in predictive accuracy
and have the ability to pinpoint for which groups of countries or which periods in
time one forecast is more accurate than other forecasts. They also demonstrate the
feasibility of identifying shifts over time in the relative factor exposure (“sensitivity”)
across different forecasts.

An important advantage of our new tests is that they can be computed using very
few time-series observations–in fact only a single cross-section-provided that cross-
sectional dependencies are properly accounted for. This makes the tests particularly
useful in microeconomic forecast applications which often have short time-series di-
mensions due to infrequently conducted surveys or the attrition of individual house-
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holds that enter and exit.21 Panel data with longer time-series dimensions may, in
turn, be subject to non-stationary dynamics as agents learn and modify their behav-
ior. Approaches such as ours that do not depend on conducting inference on long
time-series averages offer an advantage also in these settings.
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A Proofs

This section presents proofs of the theoretical results in the main body of our paper.

A.1 Theorem 1

Proof. By Theorem 5.20 of White (2014), we have

JDMn,T
σ̂(∆t+h|t)

σ̄n,T

d→ N(0, 1).

By the consistency of σ̂(∆Lt+h|t), the desired result follows from Slutzky’s theorem.
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A.2 Theorems 2 and 4

Theorems 2 and 4 follow from Theorem 1 of Ibragimov and Müller (2010) and the
continuous mapping theorem.

A.3 Theorems 3 and 5

Theorems 3 and 5 follow from Theorem 3.1 of Canay et al. (2017).

A.4 Theorem 6

Proof. Using (19), we have

∆Li,t+h|t−E(∆Li,t+h|t | F) = (u2i,t+h,1−u2i,t+h,2)−E[u2i,t+h,1−u2i,t+h,2 | F ]+2(ui,t+h,1−ui,t+h,2)λ′ift+h.

Hence, conditional on F , {∆Li,t+h|t − E(∆Li,t+h|t | F)}ni=1 is independent across
i with mean zero. By Assumption 3, the sequence {∆Li,t+h|t − E(∆Li,t+h|t | F)}nt

i=1

conditional on F satisfies the Lyapunov condition. Hence, a standard argument yields

n−1/2
∑n

i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]√
n−1

∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]2

d→ N(0, 1).

Under the null that n−1
∑n

i=1E(∆Li,t+h|t | F) = 0, we have

n−1/2
∑n

i=1 ∆Li,t+h|t√
n−1

∑n
i=1[∆Li,t+h|t − E(∆Li,t+h|t | F)]2

d→ N(0, 1).

The result now follows by noticing that n−1
∑n

i=1[∆Li,t+h|t−E(∆Li,t+h|t | F)]2 ≤
n−1

∑n
i=1(∆Li,t+h|t)

2.

A.5 Theorem 8

Proof. Start by noticing that

√
nk

(
∆u

2

t+h,k − n−1k
∑
i∈Hk

E(u2i,t+h,1 − u2i,t+h,2 | F)

)
= n

−1/2
k

∑
i∈Hk

[
(u2i,t+h,1 − u2i,t+h,2)− E(u2i,t+h,1 − u2i,t+h,2 | F) + 2(λ′1ft+hui,t+h,1 − λ′2ft+hui,t+h,2)

]
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+ n
−1/2
k

(
n−1k

∑
i∈Hk

ui,t+h,2

)2

− n−1/2k

(
n−1k

∑
i∈Hk

ui,t+h,1

)2

.

By a CLT,

n
−1/2
k

(
n−1k

∑
i∈Hk

ui,t+h,2

)2

− n−1/2k

(
n−1k

∑
i∈Hk

ui,t+h,1

)2

= OP (n
−3/2
k ) = oP (1).

Therefore, ∆u
2

t+h,k is a
√
nk-consistent estimator for n−1k

∑
i∈Hk

E(u2i,t+h,1 − u2i,t+h,2 |
F). By the same CLT argument, it is also asymptotically normal. To estimate
the variance of ∆u

2

t+h,k, we use n−1k
∑

i∈Hk
(∆Li,t+h − ∆Lt+h,k)

2, where ∆Lt+h,k =

n−1k
∑

i∈Hk
∆Li,t+h.

A.6 Corollary 1

Proof. The result follows once we notice that

√
n

(
K∑
k=1

nk
n

∆u
2

t+h,k − n−1
n∑
i=1

E(u2i,t+h,1 − u2i,t+h,2 | F)

)

=
√
n

K∑
k=1

nk
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(
∆u

2

t+h,k − n−1k
∑
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E(u2i,t+h,1 − u2i,t+h,2 | F)

)

=
K∑
k=1

nk√
n

{
n−1k

∑
i∈Hk

[
(u2i,t+h,1 − u2i,t+h,2)− E(u2i,t+h,1 − u2i,t+h,2 | F)

]
+OP (n−1k )

}

= n−1/2
n∑
i=1

[
(u2i,t+h,1 − u2i,t+h,2)− E(u2i,t+h,1 − u2i,t+h,2 | F)

]
+OP (n−1/2).

A.7 Theorem 9

Proof. By equation (28), we have

√
n

[
K∑
k=1

nk
n

(e21,k,t+h − e22,k,t+h)−
K∑
k=1

nk
n

(
(λ′1,(k)ft+h)

2 − (λ′2,(k)ft+h)
2
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= n−1/2
K∑
k=1

nk


(
n−1k

∑
i∈Hk

ui,t+h,1

)2

−

(
n−1k

∑
i∈Hk

ui,t+h,2

)2


+ 2n−1/2
n∑
i=1

(
λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2

)
.

Again as in the proof of Theorem 8, we can show that
n−1/2

∑K
k=1 nk

{(
n−1k

∑
i∈Hk

ui,t+h,1
)2 − (n−1k ∑
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ui,t+h,2

)2}
= oP (1), and so

√
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[
K∑
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n

(e21,k,t+h − e22,k,t+h)− n−1
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(λ′i,1ft+h)

2 − (λ′i,2ft+h)
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= 2n−1/2
n∑
i=1

(
λ′i,1ft+hui,+ht,1 − λ′i,2ft+hui,t+h,2

)
+ oP (1).

The rest of the proof follows by a CLT as in the proof of Theorem 8.

A.8 Lemma 1

Proof. Since we can write fs+h = (λ̄λ̄′)−1λ̄(ēs+h − ūs+h), we have ei,s+h =

λ′i(λ̄λ̄
′)−1λ̄ēs+h + ui,s+h − λ′i(λ̄λ̄′)−1λ̄ūs+h. It is not difficult to see that

λ̂′i =

(
T∑

s+h=1

[λ′i(λ̄λ̄
′)−1λ̄ēs+h + ui,s+h − λ′i(λ̄λ̄′)−1λ̄ūs+h]ē′s+h

)(
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ēs+hē
′
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′
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,

and thus
λ̂′iēt+h = λ′ift+h + ξi,t+h + εi,t+h + ζi,t+h.

where ξi,t+h = λ′i(λ̄λ̄
′)−1λ̄ūt+h, εi,t+h =

(∑T
s+h=1 ui,s+hē

′
s+h
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′
s+h

)−1
ēt+h
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s+h=1 ūs+hē
′
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)(∑T
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′
s+h

)−1
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Next, observe that
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Finally, we have
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n∑
i=1

εi,t+h,1λ
′
i,1ft+h = n−1/2f ′t+h

(
T∑

s+h=1

(
n∑
i=1

λi,1ui,s+h

)
ē′s+h

)(
T∑

s+h=1

ēs+hē
′
s+h

)−1
ēt+h.

One can show that n−1/2
∑n

i=1 εi,t+h,1λ
′
i,1ft+h = oP (1) and

n−1/2
∑n

i=1 ζi,t+h,1λ
′
i,1ft+h = oP (1). Therefore, we have

n−1/2
n∑
i=1

[(λ̂′i,1ēt+h)
2 − (λ′i,1ft+h)

2] = 2n−1/2ū′t+hλ̄
′(λ̄λ̄′)−1

(
n∑
i=1

λi,1λ
′
i,1

)
ft+h + oP (1).
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A.9 Theorem 10

Proof. We notice that

√
n

[
∆û

2

t+h − n−1
n∑
i=1

E(u2i,t+h,1 − u2i,t+h,2 | F)

]

= n−1/2
n∑
i=1

[
(u2i,t+h,1 − u2i,t+h,2)− E(u2i,t+h,1 − u2i,t+h,2 | F)

+ 2(λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2) + u′i,t+hDt+h

]
, (45)

where Dt+h = λ̄′(λ̄λ̄′)−1
(
n−1

∑n
i=1[λi,1λ

′
i,1 − λi,2λ′i,2]

)
ft+h. Since λ̂′i − λ′i(λ̄λ̄

′)−1λ̄ =

oP (1), ēt+h = λ̄′ft+h + oP (1) and (λ̄λ̄′)−1 exists asymptotically, we have D̂Dt+h
=

Dt+h + oP (1). Since {ui,t+h,m}ni=1 is independent across i, the result then follows by
the classical CLT and a self-normalized CLT; see e.g., Theorem 4.1 of Chen et al.
(2016); Peña et al. (2008).

A.10 Theorem 11

Proof. By Lemma 1, we have that under the null hypothesis,

n−1/2
n∑
i=1

[
(λ̂′i,1ēt+h)

2 − (λ̂′i,2ēt+h)
2
]

= 2n−1/2ū′t+hλ̄
′(λ̄λ̄′)−1

n∑
i=1

(
λi,1λ

′
i,1 − λi,2λ′i,2

)
ft+h+oP (1).

Since {ui,t+h,m}ni=1 is independent across i, the result then follows by the classical
CLT and a self-normalized CLT; see e.g., Theorem 4.1 of Chen et al. (2016); Peña
et al. (2008).

A.11 Lemma 2

Proof. Under Assumptions A-F and Theorem 3 in Bai (2003), recall that the following
result holds:

λ̂′if̂t+h − λ′ift+h = n−1λ′i

(
n−1

n∑
j=1

λjλ
′
j

)−1 n∑
j=1

λjujt+h
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+ T−1f ′t+h

(
T−1

T∑
s+h=1

fs+hf
′
s+h

)−1 T∑
s+h=1

fs+huis+h +OP (1/min{n, T}).

Using this result, we have λ̂′i,mft+h = λ′i,mft+h + ξi,t+h,m for m ∈ {1, 2}, where

ξi,t+h,m = n−1λ′i

(
n−1

n∑
j=1

λjλ
′
j

)−1 n∑
j=1

λj,mujt+h,m

+ T−1f ′t+h

(
T−1

T∑
s+h=1

fs+hf
′
s+h

)−1 T∑
s+h=1

fs+huis+h,m +OP (1/min{n, T}).

It follows that

n−1
n∑
i=1

[
(λ̂′i,1f̂t+h)

2 − (λ̂′i,2f̂t+h)
2
]

= n−1
n∑
i=1

[(λ′i,1ft+h)
2 − (λ′i,2ft+h)

2]

+ 2n−1
n∑
i=1

[λ′i,1ft+hξi,t+h,1 − λ′i,2ft+hξi,t+h,2]

+ n−1
n∑
i=1

[ξ2i,t+h,1 − ξ2i,t+h,2].

The last term is of order 1/min{n, T}, which is negligible if
√
n/T = o(1). Under

assumptions of weak (cross-sectional and serial) dependence in ui,t+h,m (e.g., Assump-
tions E and F in Bai (2003)), we can show that

n−1
n∑
i=1

λ′i,mft+hξi,t+h,m = n−1
n∑
i=1

λ′i,mft+hui,t+h,m + oP (n−1/2).

Using this, it follows that

n−1
n∑
i=1

[
(λ̂′i,1f̂t+h)

2 − (λ̂′i,2f̂t+h)
2
]

= n−1
n∑
i=1

[(λ′i,1ft+h)
2 − (λ′i,2ft+h)

2]

+ 2n−1
n∑
i=1

[λ′i,1ft+hui,t+h,1 − λ′i,2ft+hui,t+h,2] + oP (n−1/2).

The stated result follows from this.
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Table 1: Tests of Equal Predictive Accuracy

Panel A: GDP Growth

CE AR

h=1, S h=1, F h=0, S h=0, F h=1, S h=1, F

t-stat pooled average 0.72 0.36 0.84 -0.07 1.05 2.25

p-value (0.46) ( 0.71) ( 0.39) (0.93) (0.29) (0.02)

t-stat time clusters 0.51 0.37 0.90 -0.09 0.98 1.93

p-value (0.61) (0.71) (0.37) (0.92) (0.33) (0.06)

Randomization p-value, 1-year clusters (0.61) (0.79) (0.38) (0.92) (0.48) (0.02)

Randomization p-value, GFC clusters (0.25) (0.49) (0.24) (0.75) (0.00) (0.00)

t-stat group clusters 1.09 0.40 1.58 -0.01 1.53 2.94

p-value (0.33) (0.70) (0.18) (0.98) ( 0.17) (0.02)

Randomization p-value group clusters (0.31) (0.56) (0.12) (0.87) (0.04) (0.00)

Panel B: In�ation

t-stat pooled average 1.42 0.73 2.86 2.25 4.81 7.24

p-value (0.15) ( 0.46) ( 0.00) ( 0.02) ( 0.00) (0.00)

t-stat time clusters 1.59 0.83 3.17 2.59 4.46 7.72

p-value (0.12) ( 0.41) (0.00) (0.01) ( 0.00) (0.00)

Randomization p-value, 1-year clusters (0.12) (0.41) (0.00) (0.00) (0.00) (0.00)

Randomization p-value, GFC clusters (0.50) (0.00) (0.00) (0.00) (0.00) (0.00)

t-stat group clusters 1.01 0.72 2.27 1.55 6.14 5.56

p-value (0.36) (0.50) (0.08) (0.19) (0.00) (0.00)

Randomization p-value group clusters (0.37) (0.56) (0.00) (0.18) (0.00) (0.00)

Notes:: This table reports the outcome of tests of equal predictive accuracy, comparing the IMF World

Economic Outlook (WEO) forecasts to Consensus Economics (CE, �rst four columns) and autoregressive

(AR, columns �ve and six) forecasts. Positive values of the t-tests indicate that the WEO forecasts are

more accurate than the CE or AR forecasts, while negative values suggest the reverse. Similarly, small

p-values indicate better performance of the WEO forecasts relative to the CE or AR forecasts. In each

panel, the �rst row reports the t-stat for the null of equal predictive accuracy for the pooled average,

averaging both cross-sectionally and across time. The second row reports the associated p-value for this

test. Rows three through �ve report the outcomes of tests of equal predictive accuracy during each year

in our sample using either 26 (h = 1) or 27 (h = 0) time clusters. Row six uses three time clusters

centered around the time of the Global Financial Crisis (2007-2009), namely 1995-2006, 2007-2009, and

2010-2016. These tests are all based on cross-sectional average forecasting performance. Rows three and

four use the Ibragimov-Muller (2010) cluster test, while rows �ve and six are based on the randomization

test of Canay, Romano and Shaikh (2017). Similarly, Rows seven through nine report the outcomes of

tests of equal predictive accuracy for clusters of countries with similar characteristics and thus average

both across time and across the countries within each cluster. Rows seven and eight use the Ibragimov-

Muller (2010) cluster test, while row nine uses the randomization test of Canay, Romano and Shaikh

(2017). All p-values are based on two-sided tests. h is the forecast horizon and refers to either current-

year forecasts (h = 0) or next-year forecasts (h = 1). WEO and CE forecasts are recorded for the spring

(S) and fall (F) of the current and previous year. Panel A uses real GDP growth forecasts, while Panel

B uses in�ation data.



Table 2: Tests of Equal Predictive Accuracy Across Economic Groupings

Panel A: GDP Growth

WEO vs. CE

ae eeur lac cis dms

h=1, S 0.82 0.20 1.31 -0.47 -0.98

h=1, F 1.16 0.10 0.34 -0.96 -0.57

h=0, S 1.70 -0.79 1.60 0.45 -0.06

h=0, F 0.79 -0.92 -0.32 0.16 0.12

WEO vs. AR

ae eeur dasia lac menap cis ssa

h=1, S 1.39 2.65 0.48 0.27 0.79 1.57 -0.16

h=1, F 1.74 3.20 1.52 2.45 0.94 1.85 1.12

Panel B: In�ation

WEO vs. CE

ae eeur lac cis dms

h=1, S 0.06 0.26 -1.65 1.51 0.41

h=1, F -0.42 1.38 -1.47 2.13 0.01

h=0, S -0.08 -0.53 2.29 2.60 2.46

h=0, F -1.14 -1.27 3.60 1.98 2.57

WEO vs. AR

ae eeur dasia lac cis ms

h=1, S 4.37 2.50 4.87 4.33 2.46 3.30

h=1, F 8.78 2.66 5.00 6.05 2.94 4.76

Notes:: This table reports the outcome of tests of equal squared error predic-
tive accuracy comparing the IMF World Economic Outlook (WEO) forecasts
to Consensus Economics (CE, �rst four rows) and autoregressive (AR, rows
�ve and six) forecasts. Positive values of the t-tests indicate that the WEO
forecasts are more accurate than the CE or AR forecasts, while negative values
suggest the reverse. In each panel, each row reports a t-statistic for the null
of equal predictive accuracy for the pooled average within economic group-
ings, averaging both cross-sectionally and across time. 'ae' refers to advanced
economies, 'eeur is emerging and developing Europe, 'lac' is Latin Amer-
ica and Caribbean, 'cis' is Commonwealth of Independent States, 'menap' is
Middle East, North Africa, Afghanistan, and Pakistan, 'dasia' is emerging
and developing Asia, and 'ssa' is Sub-Sahara Africa. Finally, 'dms' combines
dasia, menap, ssa while 'ms' refers to menap and ssa combined.



Table 3: Tests of Equal Predictive Accuracy Across Di�erent Forecast Horizons

Panel A: GDP Growth

h = 1,S vs h = 1,F vs h = 0,S vs h = 1,S vs

h = 1,F h = 0,S h = 0,F h = 0,F

t-stat pooled average 0.37 1.65 2.18 5.62

p-value ( 0.70) ( 0.09) ( 0.02) (0.00)

t-stat time clusters 0.38 1.23 2.28 4.97

p-value (0.70) (0.22) (0.03) (0.00)

Randomization p-value, 1-year clusters (0.75) (0.24) (0.00) (0.00)

Randomization p-value, GFC cluster (0.00) (0.00) (0.00) (0.00)

t-stat group clusters 0.01 2.65 2.05 3.57

p-value (0.99) (0.03) (0.08) (0.01)

Randomization p-value group clusters (0.98) (0.00) (0.00) (0.00)

Panel B: In�ation

t-stat pool 2.68 5.71 6.57 6.90

pval (0.00) (0.00) (0.00) (0.00)

t-stat time cluster 2.50 6.31 7.15 7.54

pval (0.01) (0.00) (0.00) (0.00)

Randomization p-value, 1-year cluster (0.00) (0.00) (0.00) (0.00)

Randomization p-value, GFC cluster (0.00) (0.00) (0.00) (0.00)

t-stat region cluster 2.75 5.70 3.63 5.06

pval (0.03) (0.00) (0.01) (0.00)

Randomization p-value region cluster (0.01) (0.00) (0.00) (0.00)

Notes: This table reports the outcome of tests of equal squared error predictive accuracy com-

paring the IMF World Economic Outlook (WEO) forecasts across di�erent forecast horizons. h

is the forecast horizon and refers to either next-year (h = 1) or current-year (h = 0) Spring (S)

or Fall (F) forecasts. Positive test statistics (small p-values) indicate that the forecasts computed

at the short horizon are more accurate than the forecasts computed at the longer horizon, i.e.,

that predictive accuracy improves as the forecast horizon is reduced. In each panel, the �rst row

reports the t-stat for the null of equal predictive accuracy for the pooled average, averaging both

cross-sectionally and across time. The second row reports the associated p-value for this test.

Rows three through �ve report the outcomes of tests of equal predictive accuracy during each

year in our sample using either 26 (h = 1) or 27 (h = 0) time clusters. Row six uses three time

clusters centered around the time of the Global Financial Crisis (2007-2009), namely 1995-2006,

2007-2009, and 2010-2016. These tests are all based on cross-sectional average forecasting perfor-

mance. Rows three and four use the Ibragimov-Muller (2010) cluster test, while rows �ve and six

are based on the randomization test of Canay, Romano and Shaikh (2017). Similarly, Rows seven

through nine report the outcomes of tests of equal predictive accuracy for clusters of countries

with similar characteristics and thus average both across time and across the countries within

each cluster. Rows seven and eight use the Ibragimov-Muller (2010) cluster test, while row nine

uses the randomization test of Canay, Romano and Shaikh (2017). All p-values are based on

two-sided tests. Panel A uses real GDP growth forecasts, while Panel B uses in�ation data.



Table 4: Tests of Equal Predictive Accuracy Across Di�erent Forecast Horizons:

Results by economic groupings

Panel A: GDP Growth

ae eeur lac cis dms

h=1,S vs h=1,F 1.87 2.29 3.60 -0.90 0.88

h=1,F vs h=0,S 2.29 2.28 3.57 1.42 0.88

h=0,S vs h=0,F 5.22 1.99 8.21 1.87 1.83

h=1,S vs h=0,F 2.60 2.45 4.83 2.45 4.22

Panel B: In�ation

ae eeur lac cis dms

h=1,S vs h=1,F 2.64 1.49 2.73 1.30 2.06

h=1,F vs h=0,S 5.29 4.25 3.63 3.79 5.56

h=0,S vs h=0,F 5.63 1.68 5.26 4.66 5.47

h=1,S vs h=0,F 5.40 3.09 5.81 4.11 6.51

Notes:: This table reports the outcome of tests of equal squared
error predictive accuracy comparing the IMF World Economic
Outlook (WEO) forecasts across di�erent forecast horizons. h is
the forecast horizon and refers to either next-year (h = 1) or
current-year (h = 0) Spring (S) or Fall (F) forecasts. Positive test
statistics (small p-values) indicate that the predictive accuracy
improves as the forecast horizon is reduced. In each panel, each
row reports the t-statistic for the null of equal predictive accu-
racy for the pooled average within economic groupings, averag-
ing both cross-sectionally and across time. 'ae' refers to advanced
economies, 'eeur is emerging and developing Europe, 'lac' is Latin
America and Caribbean, 'cis' is Commonwealth of Independent
States. 'dms' combines three IMF groups, namely Middle East,
North Africa, Afghanistan, and Pakistan, emerging and develop-
ing Asia, and Sub-Sahara Africa.



Table 5: Di�erences in idiosyncratic error variance and squared bias components in the squared

error loss.

Panel A: GDP growth

Di�erence in idiosyncratic variance Di�erence in squared bias

1990-2016 2007-2009 1995-2016 2007-2009

Mean Median Mean Median Mean Median Mean Median

Cluster 0.16 0.09 0.59 1.00 -0.02 0.05 1.41 1.04

CCE 0.05 0.12 0.16 0.12 0.08 0.00 1.85 0.69

PCA 0.05 0.12 1.09 1.01 0.09 0.01 0.91 1.03

Panel B: In�ation

Di�erence in idiosyncratic variance Di�erence in squared bias

1990-2016 2007-2009 1995-2016 2007-2009

Cluster 0.74 0.30 2.35 2.60 0.56 0.25 1.10 0.67

CCE 0.67 0.16 1.74 0.85 0.63 0.29 1.71 0.69

PCA 0.35 0.05 0.86 0.28 0.96 0.40 2.59 1.56

Notes:: This table reports the mean and median values of the di�erence in the idiosyncratic error
variance (left panel) and squared bias components (right panel) of the mean squared forecast errors
computed for the Consensus Economics (CE) versus IMF WEO forecasts. Positive values indicate
that the idiosyncratic error variance or squared bias is larger for the CE forecasts than for the
WEO forecasts, while negative values suggest the reverse. Forecast errors have been normalized
before computing the cross-sectional average and the results refer to current-year spring forecasts.
Panel A uses errors from forecasting GDP growth, while Panel B refers to in�ation forecast errors.
The �rst row in each column assumes a cluster structure on factor loadings while the second and
third rows use the CCE and PCA estimation methods to compute factors.



Figure 1: Forecast Horizon Used in the WEO Forecasts.



Figure 2: Cross-sectional test-statistics comparing predictive accuracy in individual years in the

sample. Positive values of the test statistics indicate that the WEO forecasts are more accurate

than either the Consensus Economics (CE) or autoregressive (AR) forecasts. Negative values

suggest the reverse. The �gures use current year spring forecasts in the comparison of WEO and

CE forecasts and one-year ahead fall forecast when comparing WEO and AR(1) forecasts.

(a) GDP

(b) In�ation



Figure 3: This �gure presents t-statistics for comparing the null of equal expected squared error

loss for WEO versus CE (panels in rows 1 and 3) current-year spring (h = 0, S) forecasts or

WEO versus AR (panels in rows 2 and 4) next-year fall (h = 1, F) forecasts of GDP growth

(top two rows) and in�ation (bottom two rows). The test statistics are computed for three

time clusters, namely 1995-2006, 2007-2009 (Global Financial Crisis), and 2010-16 and for �ve

groups of countries, namely advanced economies (ae), emerging and developing Europe (eeur),

Latin America and Caribbean (lac), Commonwealth of Independent State (cis) and a �fth group

containing the remaining countries (dms). Positive test statistics suggest that WEO forecasts

are more accurate than the alternative forecasts (CE or AR).

(a) GDP

(b) In�ation



Figure 4: Cross-sectional test-statistics comparing the accuracy in individual years in the sample

of WEO forecasts of GDP growth and in�ation produced at di�erent forecast horizons, h. Positive

values of the test statistics indicate that the WEO forecasts produced at the shorter forecast

horizon are more accurate than the forecasts generated at a longer horizon. Negative values

suggest the opposite.



Figure 5: Cross-sectional comparisons of the magnitude of idiosyncratic variances in individual

years in the sample. Each panel shows the outcome of a cross-sectional test of the null that two

forecasts have the same idiosyncratic error variance in a given year. The �rst and third rows

of panels compare WEO and Consensus Economics forecasts while rows two and four compare

WEO forecasts to predictions from a simple autoregressive model. Blue color indicates that the

idiosyncratic error variance component of the WEO forecasts is smaller than the corresponding

value for the alternative forecast. Red color indicates the reverse. The �rst line in each panel is

calculated by assuming identical factor loadings within each cluster. The second and third lines

of each panel estimate the factors by CCE or PCA, respectively. The �gures use current year

spring forecasts to compare the idiosyncratic error variance component of the WEO and CE

forecasts and one-year ahead fall forecast when comparing WEO and AR(1) forecasts. Diamond

shapes indicate that the null of equal idiosyncratic error variance is rejected at the 5% level.

(a) GDP

(b) In�ation



Figure 6: Cross-sectional comparisons of the magnitude of squared biases in individual years in

the sample. Each panel shows the outcome of a cross-sectional test of the null that two forecasts

have the same squared bias in a given year. The �rst and third rows of panels compare WEO and

Consensus Economics forecasts while rows two and four compare WEO forecasts to predictions

from a simple autoregressive model. Blue color indicates that the squared bias component of

the WEO forecasts is smaller than the corresponding value for the alternative forecast. Red

color indicates the reverse. The �rst line in each panel is calculated by assuming identical factor

loadings within each cluster. The second and third lines of each panel estimate the factors by

CCE or PCA, respectively. The �gures use current year spring forecasts to compare the squared

bias component of the WEO and CE forecasts and one-year ahead fall forecast when comparing

WEO and AR(1) forecasts. Diamond shapes indicate that the null of equal squared bias is

rejected at the 5% level.

(a) GDP

(b) In�ation
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